Suppr超能文献

探讨低心血管风险个体的冠状动脉钙(CAC)评分的可能性。

Examining the Potential for Coronary Artery Calcium (CAC) Scoring for Individuals at Low Cardiovascular Risk.

机构信息

The University of Notre Dame, Fremantle, WA, Australia.

The Prince Charles Hospital, Brisbane, Qld, Australia.

出版信息

Heart Lung Circ. 2021 Dec;30(12):1819-1828. doi: 10.1016/j.hlc.2021.04.026. Epub 2021 Jul 29.

Abstract

Atherosclerosis is the commonest cause of death in Australia. Cardiovascular (CV) risk calculators have an important role in preventative cardiology, although they are are strongly age-dependent and designed to identify individuals at high risk of an imminent event. The imprecision around "intermediate" or "low" risk generates therapeutic uncertainty, and a significant proportion of patients presenting with myocardial infarction come from these groups, often with no warning. This highlights a conundrum: "Low" risk does not mean "no" risk. A fresh approach may be required to address the clinical conundrum around CV preventative approaches in non-high-risk individuals. While probabilistic calculators do not measure atherosclerosis, calculation of Coronary Artery Calcium (CAC) scores by low-dose computed tomography (CT) can provide a snapshot of atherosclerotic burden. In intermediate-risk individuals, CAC is well-established as an aid to CV risk prediction. Although CAC scoring in low-risk asymptomatic people may be considered controversial, CAC has emerged as the single best predictor of CV events in asymptomatic individuals, independent of traditional risk factor calculators. Therefore, apart from the contribution of age and sex, the somewhat arbitrary distinction between "intermediate" and "low" CV risk using probabilistic calculators may need to be reconsidered. A zero CAC score has a very low future event rate and non-zero CAC scores are associated with a progressive, graded increase in risk as the CAC score rises. Here, we examine the evidence for CAC screening in low-risk individuals, and propose more widespread use of CAC using simple new model intended to enhance established CV risk prediction equations.

摘要

动脉粥样硬化是澳大利亚最常见的死亡原因。心血管(CV)风险计算器在预防心脏病学中具有重要作用,尽管它们强烈依赖年龄,并旨在识别即将发生事件的高风险个体。“中危”或“低危”的不准确性产生了治疗上的不确定性,并且有相当一部分心肌梗死患者来自这些群体,通常没有任何预警。这突显出一个难题:“低危”并不意味着“无风险”。可能需要一种新方法来解决非高危人群中 CV 预防方法的临床难题。虽然概率计算器不能测量动脉粥样硬化,但通过低剂量计算机断层扫描(CT)计算冠状动脉钙(CAC)评分可以提供动脉粥样硬化负担的快照。在中危个体中,CAC 已被证明有助于 CV 风险预测。虽然在低危无症状人群中进行 CAC 评分可能被认为存在争议,但 CAC 已成为无症状个体中 CV 事件的最佳预测因素之一,独立于传统风险因素计算器。因此,除了年龄和性别因素的贡献外,使用概率计算器对“中危”和“低危”CV 风险的划分可能需要重新考虑。零 CAC 评分的未来事件发生率非常低,而非零 CAC 评分与 CAC 评分升高时风险呈渐进、分级增加相关。在这里,我们检查了 CAC 筛查在低危个体中的证据,并提出了更广泛地使用 CAC 的建议,采用了旨在增强现有 CV 风险预测方程的简单新模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验