Suppr超能文献

比较人血浆中药物未结合分数的实验室变异性和预测误差。

Comparison between lab variability and prediction errors for the unbound fraction of drugs in human plasma.

机构信息

Prosilico AB, Huddinge, Sweden.

Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

出版信息

Xenobiotica. 2021 Oct;51(10):1095-1100. doi: 10.1080/00498254.2021.1964044. Epub 2021 Aug 13.

Abstract

Variability of the unbound fraction in plasma (f) between labs, methods and conditions is known to exist. Variability and uncertainty of this parameter influence predictions of the overall pharmacokinetics of drug candidates and might jeopardise safety in early clinical trials. Objectives of this study were to evaluate the variability of human f-estimates between labs for a range of different drugs, and to develop and validate an f-prediction method and compare the results to the lab variability.A new method with prediction accuracy (Q) of 0.69 for log f was developed. The median and maximum prediction errors were 1.9- and 92-fold, respectively. Corresponding estimates for lab variability (ratio between max and min f for each compound) were 2.0- and 185-fold, respectively. Greater than 10-fold lab variability was found for 14 of 117 selected compounds.Comparisons demonstrate that predictions were about as reliable as lab estimates when these have been generated during different conditions. Results propose that the new validated prediction method is valuable not only for predictions at the drug design stage, but also for reducing uncertainties of f-estimations and improving safety of drug candidates entering the clinical phase.

摘要

在不同实验室、方法和条件下,血浆中未结合分数(f)的变异性是已知存在的。该参数的变异性和不确定性会影响候选药物整体药代动力学的预测,并可能危及早期临床试验的安全性。本研究的目的是评估一系列不同药物的人体 f 估计值在实验室之间的变异性,并开发和验证一种 f 预测方法,并将结果与实验室变异性进行比较。

开发了一种新的方法,其 f 值预测准确性(Q)为 0.69。中位数和最大预测误差分别为 1.9 倍和 92 倍。相应的实验室变异性估计值(每个化合物的最大和最小 f 之间的比值)分别为 2.0 倍和 185 倍。在 117 种选定的化合物中,有 14 种发现了大于 10 倍的实验室变异性。

比较表明,当在不同条件下生成时,预测与实验室估计一样可靠。结果表明,新验证的预测方法不仅对药物设计阶段的预测有价值,而且还可以降低 f 估计的不确定性,提高进入临床阶段的候选药物的安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验