Suppr超能文献

基于衰减全反射傅里叶变换红外光谱和化学计量学的天麻粉快速质量等级判别方法

A rapid quality grade discrimination method for Gastrodia elata powderusing ATR-FTIR and chemometrics.

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China.

Department of Automation, Tsinghua University, Beijing 100084, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jan 5;264:120189. doi: 10.1016/j.saa.2021.120189. Epub 2021 Jul 16.

Abstract

Gastrodia elata is an obligate fungal symbiont used in traditional Chinese medicine. There are currently 4 grades of the plant based on the "Commodity Specification Standard of 76 Kinds of Medicinal Materials". The traditional discrimination methods for determining the medicinal grade of G. elata powders are complex and time-consuming which are not suitable for rapid analysis. We developed a rapid analysis method for this plant using attenuated total reflection and Fourier-transform infrared spectroscopy (ATR-FTIR) together with machine learning algorithms. The original spectroscopic data was first pre-treated using the multiplicative scatter correction (MSC) method and 4 principal components were extracted using extremely randomized trees (Extra-trees) and principal component analysis (PCA) algorithms, and different kinds of classification models were established. We found that multilayer perceptron classifier (MLPC) modeling was superior to support vector machine (SVM) and resulted in validation and prediction accuracies of 99.17% and 100%, respectively and a modeling time of 2.48 s. The methods established from the current study can rapidly and effectively distinguish the 4 different types of G. elata powders and thus provides a platform for rapid quality inspection.

摘要

天麻是一种传统中药中的专性真菌共生体。目前,根据《七十六种药材商品规格标准》,该植物分为 4 个等级。传统的天麻粉末药材等级鉴别方法复杂且耗时,不适合快速分析。我们采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)和机器学习算法开发了一种快速分析该植物的方法。首先使用乘性散射校正(MSC)方法对原始光谱数据进行预处理,然后使用极端随机树(Extra-trees)和主成分分析(PCA)算法提取 4 个主成分,并建立不同的分类模型。我们发现,多层感知机分类器(MLPC)模型优于支持向量机(SVM),验证和预测准确率分别达到 99.17%和 100%,建模时间为 2.48 秒。本研究建立的方法可以快速有效地鉴别 4 种不同类型的天麻粉末,从而为快速质量检查提供了一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验