Suppr超能文献

运用生物信息学分析鉴定结直肠癌相关的枢纽基因和 microRNAs。

Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.

机构信息

Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.

Department of Biology, Faculty of Basic Sciences, Shahrekord, Iran.

出版信息

Med Oncol. 2021 Aug 14;38(9):114. doi: 10.1007/s12032-021-01543-5.

Abstract

The third leading cause of cancer-related deaths in the world, colorectal cancer (CRC) is a global health issue that should be addressed in both diagnostics and therapeutics to improve patient survival rate. Today, microarray data analysis is increasingly being used as a novel and effective method for classification of malignancies and making prognostic assessments. Built upon the concept of microarray data analysis and aimed at the identification of CRC-associated genes, our study has adopted an integrative analysis for the gene expression patterns of four microarray datasets in gene expression omnibus (GEO) and microRNAs (miRNAs) expression profiles. We downloaded four gene expression profiles, i.e., GSE37182, GSE25070, GSE10950, and GSE113513, miRNAs gene expression profiles and differentially expressed genes (DEGs). We used R software, the DAVID database, protein-protein interaction (PPI) networks, the Cytoscape program and receiver operating characteristic (ROC) curve for data analysis. Out of the four gene expression profiles, a total of 43 common DEGs were identified, including 10 hub genes, SLC26A3, CLCA1, GUCA2A, MS4A12, CLCA4, GUCA2B, KRT20, AQP8, MAOA, and ADH1A, and four differentially expressed miRNAs, miR-552, miR-423-5p, miR-502-3p, and miR-490-5p. The highly enriched modes of the signaling pathways among these DEGs were speculated to be involved in various processes including nitrogen metabolism, mineral absorption, pancreatic secretions, and tyrosine metabolism in Kyoto encyclopedia of genes and genomes (KEGG) database. According to our bioinformatics analysis, the DEGs identified in the present study could be considered as significant hallmarks in the molecular mechanisms of CRC development. Our findings may assist scientists with developing novel strategies not only for prediction of CRC, but also for screening and early diagnosis, and treatment of CRC patients.

摘要

世界上导致癌症相关死亡的第三大原因是结直肠癌(CRC),这是一个全球性的健康问题,应该在诊断和治疗两方面都得到解决,以提高患者的生存率。如今,微阵列数据分析越来越多地被用作一种新颖有效的方法来对恶性肿瘤进行分类,并进行预后评估。我们的研究基于微阵列数据分析的概念,旨在确定与 CRC 相关的基因,采用了整合分析方法,对基因表达组学(GEO)和 microRNAs(miRNAs)表达谱中的四个微阵列数据集的基因表达模式进行了分析。我们下载了四个基因表达谱,即 GSE37182、GSE25070、GSE10950 和 GSE113513,以及 microRNAs 基因表达谱和差异表达基因(DEGs)。我们使用 R 软件、DAVID 数据库、蛋白质-蛋白质相互作用(PPI)网络、Cytoscape 程序和接收者操作特征(ROC)曲线进行数据分析。在这四个基因表达谱中,共鉴定出 43 个共同的差异表达基因,包括 10 个 hub 基因,即 SLC26A3、CLCA1、GUCA2A、MS4A12、CLCA4、GUCA2B、KRT20、AQP8、MAOA 和 ADH1A,以及四个差异表达的 microRNAs,即 miR-552、miR-423-5p、miR-502-3p 和 miR-490-5p。这些差异表达基因中信号通路的高度富集模式被推测与氮代谢、矿物质吸收、胰腺分泌和酪氨酸代谢等各种过程有关,这些过程都在京都基因与基因组百科全书(KEGG)数据库中得到了体现。根据我们的生物信息学分析,本研究中鉴定的差异表达基因可以被认为是 CRC 发生发展分子机制中的重要标志。我们的研究结果可能有助于科学家们不仅开发出预测 CRC 的新策略,还可以开发出用于 CRC 患者筛查、早期诊断和治疗的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验