Suppr超能文献

CRISPR 生物学与技术中的 tracrRNA

The tracrRNA in CRISPR Biology and Technologies.

机构信息

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; email:

Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.

出版信息

Annu Rev Genet. 2021 Nov 23;55:161-181. doi: 10.1146/annurev-genet-071719-022559. Epub 2021 Aug 20.

Abstract

CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a -activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances.

摘要

CRISPR-Cas 适应性免疫系统在细菌和古菌中利用短的 CRISPR RNA(crRNA)来指导序列特异性识别和清除外来遗传物质。多个 crRNA 以紧凑的形式储存在一起,称为 CRISPR 数组,该数组被转录并加工成单个 crRNA。虽然确切的加工机制差异很大,但包括编码 Cas9 核酸酶在内的一些 CRISPR-Cas 系统依赖于 -激活 crRNA(tracrRNA)。tracrRNA 于 2011 年被发现,并迅速被采用来创建单指导 RNA,作为 CRISPR-Cas9 技术的核心组成部分。此后,进一步的研究揭示了除了 crRNA 生物发生传统作用之外的 tracrRNA 过程,揭示了除了 Cas9 之外还依赖于 tracrRNA 的 Cas 核酶,并基于 tracrRNA 工程建立了新的应用。在这篇综述中,我们描述了 tracrRNA 的生物学特性,以及其不断的表征如何为原核免疫防御提供了新的见解,并实现了关键的技术进步。

相似文献

1
The tracrRNA in CRISPR Biology and Technologies.
Annu Rev Genet. 2021 Nov 23;55:161-181. doi: 10.1146/annurev-genet-071719-022559. Epub 2021 Aug 20.
2
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
RNA Biol. 2013 May;10(5):726-37. doi: 10.4161/rna.24321. Epub 2013 Apr 5.
3
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
4
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
FEMS Microbiol Rev. 2015 May;39(3):428-41. doi: 10.1093/femsre/fuv023. Epub 2015 May 19.
5
Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors.
Nat Commun. 2022 Apr 11;13(1):1937. doi: 10.1038/s41467-022-29604-x.
6
Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.
Methods Mol Biol. 2022;2404:111-133. doi: 10.1007/978-1-0716-1851-6_6.
7
Approaches to study CRISPR RNA biogenesis and the key players involved.
Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17.
8
Identification and Evolution of Cas9 tracrRNAs.
CRISPR J. 2021 Jun;4(3):438-447. doi: 10.1089/crispr.2020.0093.
9
Adaptation of bacterial natural single guide RNA (tracr-L) for efficient plant genome editing.
Plant Cell Rep. 2024 Nov 23;43(12):291. doi: 10.1007/s00299-024-03371-z.
10
Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9.
Science. 2021 May 28;372(6545):941-948. doi: 10.1126/science.abe7106. Epub 2021 Apr 27.

引用本文的文献

1
Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection.
Biomedicines. 2025 Jun 30;13(7):1590. doi: 10.3390/biomedicines13071590.
2
Conditional guide RNA deactivation by mRNA and small molecule triggers in Saccharomyces cerevisiae.
N Biotechnol. 2025 Jul 17;89:105-118. doi: 10.1016/j.nbt.2025.07.004.
3
A review on the mechanism and potential diagnostic application of CRISPR/Cas13a system.
Mamm Genome. 2025 Jun 24. doi: 10.1007/s00335-025-10143-x.
5
Application of CRISPR-Cas9 in microbial cell factories.
Biotechnol Lett. 2025 Apr 21;47(3):46. doi: 10.1007/s10529-025-03592-6.
7
Strategic base modifications refine RNA function and reduce CRISPR-Cas9 off-targets.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkaf082.
8
Biology and applications of CRISPR-Cas12 and transposon-associated homologs.
Nat Biotechnol. 2024 Dec;42(12):1807-1821. doi: 10.1038/s41587-024-02485-9. Epub 2024 Dec 4.
9
Adaptation of bacterial natural single guide RNA (tracr-L) for efficient plant genome editing.
Plant Cell Rep. 2024 Nov 23;43(12):291. doi: 10.1007/s00299-024-03371-z.
10
Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system.
Heliyon. 2024 Oct 18;10(20):e39538. doi: 10.1016/j.heliyon.2024.e39538. eCollection 2024 Oct 30.

本文引用的文献

1
Identification and Evolution of Cas9 tracrRNAs.
CRISPR J. 2021 Jun;4(3):438-447. doi: 10.1089/crispr.2020.0093.
2
Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9.
Science. 2021 May 28;372(6545):941-948. doi: 10.1126/science.abe7106. Epub 2021 Apr 27.
3
Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease.
Nucleic Acids Res. 2021 Apr 19;49(7):4120-4128. doi: 10.1093/nar/gkab179.
4
A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression.
Cell. 2021 Feb 4;184(3):675-688.e19. doi: 10.1016/j.cell.2020.12.017. Epub 2021 Jan 8.
5
Structure of the miniature type V-F CRISPR-Cas effector enzyme.
Mol Cell. 2021 Feb 4;81(3):558-570.e3. doi: 10.1016/j.molcel.2020.11.035. Epub 2020 Dec 16.
6
CRISPR pioneers win Nobel prize.
Nat Rev Drug Discov. 2020 Dec;19(12):827. doi: 10.1038/d41573-020-00198-7.
7
A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
Nat Commun. 2020 Nov 2;11(1):5512. doi: 10.1038/s41467-020-19344-1.
8
Engineered RNA-Interacting CRISPR Guide RNAs for Genetic Sensing and Diagnostics.
CRISPR J. 2020 Oct;3(5):398-408. doi: 10.1089/crispr.2020.0029.
9
Optimization of AsCas12a for combinatorial genetic screens in human cells.
Nat Biotechnol. 2021 Jan;39(1):94-104. doi: 10.1038/s41587-020-0600-6. Epub 2020 Jul 13.
10
A scoutRNA Is Required for Some Type V CRISPR-Cas Systems.
Mol Cell. 2020 Aug 6;79(3):416-424.e5. doi: 10.1016/j.molcel.2020.06.022. Epub 2020 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验