Suppr超能文献

用于锌空气电池中空气呼吸电极的先进氧电催化剂。

Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.

作者信息

Kundu Aniruddha, Mallick Sourav, Ghora Santanu, Raj C Retna

机构信息

Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40172-40199. doi: 10.1021/acsami.1c08462. Epub 2021 Aug 23.

Abstract

The electrochemical reduction of oxygen to water and the evolution of oxygen from water are two important electrode reactions extensively studied for the development of electrochemical energy conversion and storage technologies based on oxygen electrocatalysis. The development of an inexpensive, highly active, and durable nonprecious-metal-based oxygen electrocatalyst is indispensable for emerging energy technologies, including anion exchange membrane fuel cells, metal-air batteries (MABs), water electrolyzers, etc. The activity of an oxygen electrocatalyst largely decides the overall energy storage performance of these devices. Although the catalytic activities of Pt and Ru/Ir-based catalysts toward an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER) are known, the high cost and lack of durability limit their extensive use for practical applications. This review article highlights the oxygen electrocatalytic activity of the emerging non-Pt and non-Ru/Ir oxygen electrocatalysts including transition-metal-based random alloys, intermetallics, metal-coordinated nitrogen-doped carbon (M-N-C), and transition metal phosphides, nitrides, etc., for the development of an air-breathing electrode for aqueous primary and secondary zinc-air batteries (ZABs). Rational surface and chemical engineering of these electrocatalysts is required to achieve the desired oxygen electrocatalytic activity. The surface engineering increases the number of active sites, whereas the chemical engineering enhances the intrinsic activity of the catalyst. The encapsulation or integration of the active catalyst with undoped or heteroatom-doped carbon nanostructures affords an enhanced durability to the active catalyst. In many cases, the synergistic effect between the heteroatom-doped carbon matrix and the active catalyst plays an important role in controlling the catalytic activity. The ORR activity of these catalysts is evaluated in terms of onset potential, number of electrons transferred, limiting current density, and durability. The bifunctional oxygen electrocatalytic activity and ZAB performance, on the other hand, are measured in terms of potential gap between the ORR and OER, Δ = - , specific capacity, peak power density, open circuit voltage, voltaic efficiency, and charge-discharge cycling stability. The nonprecious metal electrocatalyst-based ZABs are very promising and they deliver high power density, specific capacity, and round-trip efficiency. The active site for oxygen electrocatalysis and challenges associated with carbon support is briefly addressed. Despite the considerable progress made with the emerging electrocatalysts in recent years, several issues are yet to be addressed to achieve the commercial potential of rechargeable ZAB for practical applications.

摘要

氧还原为水的电化学过程以及水分解产生氧的过程是两个重要的电极反应,基于氧电催化的电化学能量转换与存储技术的发展对其进行了广泛研究。开发一种廉价、高活性且耐用的非贵金属基氧电催化剂对于包括阴离子交换膜燃料电池、金属空气电池(MABs)、水电解槽等在内的新兴能源技术而言不可或缺。氧电催化剂的活性在很大程度上决定了这些装置的整体储能性能。尽管已知Pt基和Ru/Ir基催化剂对氧还原反应(ORR)和析氧反应(OER)具有催化活性,但高成本和缺乏耐久性限制了它们在实际应用中的广泛使用。这篇综述文章重点介绍了新兴的非Pt和非Ru/Ir氧电催化剂的氧电催化活性,这些催化剂包括过渡金属基无序合金、金属间化合物、金属配位氮掺杂碳(M-N-C)以及过渡金属磷化物、氮化物等,用于开发水系一次和二次锌空气电池(ZABs)的透气电极。为实现所需的氧电催化活性,需要对这些电催化剂进行合理的表面和化学工程设计。表面工程增加了活性位点的数量,而化学工程提高了催化剂的本征活性。将活性催化剂与未掺杂或杂原子掺杂的碳纳米结构进行封装或整合,可提高活性催化剂的耐久性。在许多情况下,杂原子掺杂碳基体与活性催化剂之间的协同效应在控制催化活性方面起着重要作用。根据起始电位、转移电子数、极限电流密度和耐久性来评估这些催化剂的ORR活性。另一方面,通过ORR和OER之间的电位差Δ = - 、比容量、峰值功率密度、开路电压、伏打效率以及充放电循环稳定性来衡量双功能氧电催化活性和ZAB性能。基于非贵金属电催化剂的ZABs非常有前景,它们具有高功率密度、比容量和往返效率。简要讨论了氧电催化的活性位点以及与碳载体相关的挑战。尽管近年来新兴电催化剂取得了显著进展,但要实现可充电ZAB在实际应用中的商业潜力,仍有几个问题有待解决。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验