Suppr超能文献

增强渗透与滞留(EPR)效应:概念及增强其应用方法的意义

The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.

作者信息

Wu Jun

机构信息

Center for Comparative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Rd, Duarte, CA 91010, USA.

出版信息

J Pers Med. 2021 Aug 6;11(8):771. doi: 10.3390/jpm11080771.

Abstract

Chemotherapy for human solid tumors in clinical practice is far from satisfactory. Despite the discovery and synthesis of hundreds of thousands of anticancer compounds targeting various crucial units in cancer cell proliferation and metabolism, the fundamental problem is the lack of targeting delivery of these compounds selectively into solid tumor tissue to maintain an effective concentration level for a certain length of time for drug-tumor interaction to execute anticancer activities. The enhanced permeability and retention effect (EPR effect) describes a universal pathophysiological phenomenon and mechanism in which macromolecular compounds such as albumin and other polymer-conjugated drugs beyond certain sizes (above 40 kDa) can progressively accumulate in the tumor vascularized area and thus achieve targeting delivery and retention of anticancer compounds into solid tumor tissue. Targeting therapy via the EPR effect in clinical practice is not always successful since the strength of the EPR effect varies depending on the type and location of tumors, status of blood perfusion in tumors, and the physical-chemical properties of macromolecular anticancer agents. This review highlights the significance of the concept and mechanism of the EPR effect and discusses methods for better utilizing the EPR effect in developing smarter macromolecular nanomedicine to achieve a satisfactory outcome in clinical applications.

摘要

在临床实践中,用于治疗人类实体瘤的化疗效果远不尽人意。尽管已发现并合成了数十万种针对癌细胞增殖和代谢中各种关键环节的抗癌化合物,但根本问题在于缺乏将这些化合物选择性地靶向递送至实体瘤组织的方法,从而无法在一定时间内维持有效浓度水平,以实现药物与肿瘤的相互作用并发挥抗癌活性。增强的渗透与滞留效应(EPR效应)描述了一种普遍的病理生理现象及机制,即诸如白蛋白等大分子化合物以及其他超过一定尺寸(40 kDa以上)的聚合物偶联药物能够逐渐在肿瘤血管化区域蓄积,进而实现抗癌化合物在实体瘤组织中的靶向递送与滞留。在临床实践中,通过EPR效应进行靶向治疗并非总是成功的,因为EPR效应的强度会因肿瘤的类型和位置、肿瘤的血液灌注状况以及大分子抗癌药物的物理化学性质而有所不同。本综述强调了EPR效应概念和机制的重要性,并讨论了在开发更智能的大分子纳米药物以在临床应用中取得满意疗效时更好地利用EPR效应的方法。

相似文献

3
Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.
Eur J Pharm Biopharm. 2009 Mar;71(3):409-19. doi: 10.1016/j.ejpb.2008.11.010. Epub 2008 Dec 3.
7
Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents.
Pharmaceutics. 2019 Jul 16;11(7):343. doi: 10.3390/pharmaceutics11070343.
10
Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity.
Adv Drug Deliv Rev. 2015 Aug 30;91:3-6. doi: 10.1016/j.addr.2015.01.002. Epub 2015 Jan 9.

引用本文的文献

1
Structural and functional properties of neodymium-doped hydroxyapatite nanoparticles for biomedical applications.
Biotechnol Rep (Amst). 2025 Aug 15;48:e00916. doi: 10.1016/j.btre.2025.e00916. eCollection 2025 Dec.
2
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges.
Pharmaceuticals (Basel). 2025 Jul 22;18(8):1086. doi: 10.3390/ph18081086.
3
The Potential of Amphiphilic Cyclodextrins as Carriers for Therapeutic Purposes: A Short Overview.
Pharmaceutics. 2025 Aug 21;17(8):1086. doi: 10.3390/pharmaceutics17081086.
4
Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions.
MedComm (2020). 2025 Aug 21;6(9):e70337. doi: 10.1002/mco2.70337. eCollection 2025 Sep.
5
Achieving cell-type selectivity in metabolic oligosaccharide engineering.
RSC Chem Biol. 2025 Jul 29. doi: 10.1039/d5cb00168d.
6
Multiscale physics-based modelling of nanocarrier-assisted intravascular drug delivery.
Front Drug Deliv. 2024 Mar 4;4:1362660. doi: 10.3389/fddev.2024.1362660. eCollection 2024.
7
Engineered Whey Protein Nanoparticles for Intracellular Drug Delivery.
ACS Omega. 2025 Aug 1;10(31):34414-34426. doi: 10.1021/acsomega.5c02513. eCollection 2025 Aug 12.
10
Overcoming resistant cancerous tumors through combined photodynamic and immunotherapy (photoimmunotherapy).
Front Immunol. 2025 Jul 17;16:1633953. doi: 10.3389/fimmu.2025.1633953. eCollection 2025.

本文引用的文献

1
The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
Theranostics. 2020 Jun 25;10(17):7921-7924. doi: 10.7150/thno.49577. eCollection 2020.
3
The entry of nanoparticles into solid tumours.
Nat Mater. 2020 May;19(5):566-575. doi: 10.1038/s41563-019-0566-2. Epub 2020 Jan 13.
4
Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.
Mater Sci Eng C Mater Biol Appl. 2019 May;98:1252-1276. doi: 10.1016/j.msec.2019.01.066. Epub 2019 Jan 18.
6
Solid stress and elastic energy as measures of tumour mechanopathology.
Nat Biomed Eng. 2016;1. doi: 10.1038/s41551-016-0004. Epub 2016 Nov 28.
7
Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.
Adv Drug Deliv Rev. 2017 Sep 15;119:44-60. doi: 10.1016/j.addr.2017.07.007. Epub 2017 Jul 8.
8
To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
J Control Release. 2016 Dec 28;244(Pt A):108-121. doi: 10.1016/j.jconrel.2016.11.015. Epub 2016 Nov 18.
9
Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: In vitro and in vivo studies.
Colloids Surf B Biointerfaces. 2015 Dec 1;136:885-91. doi: 10.1016/j.colsurfb.2015.10.046. Epub 2015 Oct 31.
10
Principles of nanoparticle design for overcoming biological barriers to drug delivery.
Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验