Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
Nat Methods. 2021 Sep;18(9):1060-1067. doi: 10.1038/s41592-021-01242-z. Epub 2021 Sep 3.
N-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.
N6-甲基腺苷(m6A)是哺乳动物中信使 RNA 最普遍的修饰。为了研究其功能和动态,我们迫切需要在三个水平上定量 m6A:位点、基因和样本。目前的方法在一定程度上解决了这些需求。在这里,我们开发了 m6A-seq2,它依赖于多聚体 m6A-免疫沉淀和带有条形码的混合样本。m6A-seq2 大大提高了通量,同时减少了技术变异性、对输入材料的要求和成本。m6A-seq2 还具有独特的能力,可以提供样本水平的 m6A 相对定量,作为基于质谱的方法的正交替代。最后,我们开发了一种用于基因水平 m6A 定量的计算方法。我们证明,使用这种度量标准,大约 30%的小鼠胚胎干细胞中 RNA 半衰期的变异性可以得到解释,这确立了 m6A 作为 RNA 稳定性的主要驱动因素。因此,m6A-seq2 为在三个不同水平上解析 m6A 介导的调控提供了一个实验和分析框架。