School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
J Hazard Mater. 2022 Feb 5;423(Pt B):127192. doi: 10.1016/j.jhazmat.2021.127192. Epub 2021 Sep 12.
In this work, a novel adsorbent, 3D hierarchical CS@PANI@ZnAl-LDH composite, has been successfully fabricated through the hydrothermal synthesis of the carbon sphere, oxidative polymerization of polyaniline, and in-site growth of ZnAl-layered double hydroxides, simultaneously applied for the naproxen removal from aqueous solutions. The dynamics and isotherms fit better with the pseudo-second-order and Langmuir model, demonstrating the chemisorption, monolayer, and endothermic process. In addition, the high uptake capacities of CS@PANI@ZnAl-LDH for naproxen was 545.5 mg/g at 298 K when the pH was 5.0, outperforming most previously reported materials. Moreover, after five adsorption-desorption cycles, the spent CS@PANI@ZnAl-LDH maintains high removal efficiency and structural composition, revealing excellent recyclability and stability. Furthermore, Fourier transformed infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses indicate electrostatic interactions, π-π interactions, and hydrogen bonding between CS@APNI@ZnAl-LDH and naproxen. Quantitative analyses, Localized orbit locator (LOL)-π isosurface, and Independent Gradient Model further verify the adsorption mechanisms mentioned above, indicating the synergistic effects between PANI and ZnAl-LDH improve the elimination ability for naproxen. Significantly, Hirshfeld surface analyses reveal that naproxen behaves as the H-bond acceptor, and the ZnAl-LDH acts as the H-bond donor. This work provided a feasible way to design purification materials for wastewater treatment.
在这项工作中,通过碳球的水热合成、聚苯胺的氧化聚合和 ZnAl 层状双氢氧化物的原位生长,成功制备了一种新型吸附剂 3D 分级 CS@PANI@ZnAl-LDH 复合材料,同时将其应用于从水溶液中去除萘普生。动力学和等温线更符合伪二阶和 Langmuir 模型,表明了化学吸附、单层和吸热过程。此外,在 298 K 时 pH 值为 5.0 时,CS@PANI@ZnAl-LDH 对萘普生的高吸附容量为 545.5 mg/g,优于大多数先前报道的材料。此外,经过五次吸附-解吸循环后,用过的 CS@PANI@ZnAl-LDH 仍保持高去除效率和结构组成,显示出优异的可回收性和稳定性。此外,傅里叶变换红外光谱(FT-IR)和 X 射线光电子能谱(XPS)分析表明 CS@APNI@ZnAl-LDH 和萘普生之间存在静电相互作用、π-π 相互作用和氢键。定量分析、局域轨道定位(LOL)-π等立体图和独立梯度模型进一步验证了上述吸附机制,表明 PANI 和 ZnAl-LDH 之间的协同作用提高了对萘普生的去除能力。值得注意的是,Hirshfeld 表面分析表明,萘普生作为氢键受体,而 ZnAl-LDH 作为氢键供体。这项工作为设计用于废水处理的净化材料提供了一种可行的方法。