Suppr超能文献

马来族结直肠癌患者完整错配修复蛋白的全基因组图谱。

Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins.

机构信息

Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.

Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.

出版信息

Genes (Basel). 2021 Sep 20;12(9):1448. doi: 10.3390/genes12091448.

Abstract

BACKGROUND

This study aimed to identify new genes associated with CRC in patients with normal mismatch repair (MMR) protein expression.

METHOD

Whole-genome sequencing (WGS) was performed in seven early-age-onset Malay CRC patients. Potential germline genetic variants, including single-nucleotide variations and insertions and deletions (indels), were prioritized using functional and predictive algorithms.

RESULTS

An average of 3.2 million single-nucleotide variations (SNVs) and over 800 indels were identified. Three potential candidate variants in three genes- and -which were predicted to affect protein function, were identified in three Malay CRC patients. In addition, 19 candidate genes- and -harbouring nonsense variants were prioritised. These genes are suggested to play a role in cancer predisposition and to be associated with cancer risk. Pathway enrichment analysis indicated significant enrichment in the olfactory signalling pathway.

CONCLUSION

This study provides a new spectrum of insights into the potential genes, variants and pathways associated with CRC in Malay patients.

摘要

背景

本研究旨在鉴定在错配修复(MMR)蛋白表达正常的 CRC 患者中与 CRC 相关的新基因。

方法

对 7 名早发马来 CRC 患者进行全基因组测序(WGS)。使用功能和预测算法对潜在的种系遗传变异,包括单核苷酸变异和插入缺失(indels)进行优先排序。

结果

鉴定出平均 320 万个单核苷酸变异(SNVs)和 800 多个插入缺失。在 3 名马来 CRC 患者中鉴定出三个基因-和 -中的三个潜在候选变异,这些变异被预测会影响蛋白质功能。此外,优先考虑了 19 个候选基因-和 -,它们含有无义变异。这些基因被认为在癌症易感性中起作用,并与癌症风险相关。通路富集分析表明嗅觉信号通路显著富集。

结论

本研究为马来患者 CRC 相关的潜在基因、变异和通路提供了新的见解。

相似文献

1
Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins.
Genes (Basel). 2021 Sep 20;12(9):1448. doi: 10.3390/genes12091448.
3
Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers?
Eur J Cancer. 2013 May;49(7):1578-87. doi: 10.1016/j.ejca.2013.01.029. Epub 2013 Feb 22.
4
Early genetic aberrations in patients with sporadic colorectal cancer.
Mol Carcinog. 2018 Jan;57(1):114-124. doi: 10.1002/mc.22738. Epub 2017 Oct 18.
5
Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients.
PLoS One. 2016 Jun 14;11(6):e0157381. doi: 10.1371/journal.pone.0157381. eCollection 2016.
6
Variations in mismatch repair genes and colorectal cancer risk and clinical outcome.
Mutagenesis. 2014 Jul;29(4):259-65. doi: 10.1093/mutage/geu014. Epub 2014 Apr 22.
8
Targeted next-generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families.
Cancer Med. 2016 May;5(5):929-41. doi: 10.1002/cam4.628. Epub 2016 Jan 25.
9
The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.
Eur J Hum Genet. 2016 Oct;24(10):1501-5. doi: 10.1038/ejhg.2016.44. Epub 2016 May 11.
10
The coding microsatellite mutation profile of PMS2-deficient colorectal cancer.
Exp Mol Pathol. 2021 Oct;122:104668. doi: 10.1016/j.yexmp.2021.104668. Epub 2021 Jul 22.

引用本文的文献

1
Advances in neoantigen-based immunotherapy for head and neck squamous cell carcinoma: a comprehensive review.
Front Oncol. 2025 May 15;15:1593048. doi: 10.3389/fonc.2025.1593048. eCollection 2025.
2
3
Transcriptomics-based anti-tuberculous mechanism of traditional Chinese polyherbal preparation NiuBeiXiaoHe intermediates.
Front Pharmacol. 2024 Sep 19;15:1415951. doi: 10.3389/fphar.2024.1415951. eCollection 2024.
5
Neoantigens: promising targets for cancer therapy.
Signal Transduct Target Ther. 2023 Jan 6;8(1):9. doi: 10.1038/s41392-022-01270-x.

本文引用的文献

1
MTSS1 inhibits colorectal cancer metastasis by regulating the CXCR4/CXCL12 signaling axis.
Int J Mol Med. 2021 May;47(5). doi: 10.3892/ijmm.2021.4898. Epub 2021 Mar 2.
3
The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20404-20410. doi: 10.1073/pnas.1902211116. Epub 2019 Sep 23.
4
Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics.
Front Genet. 2019 Feb 12;10:49. doi: 10.3389/fgene.2019.00049. eCollection 2019.
5
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
6
Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population.
PLoS One. 2018 Mar 16;13(3):e0193547. doi: 10.1371/journal.pone.0193547. eCollection 2018.
7
Genomic variations in paired normal controls for lung adenocarcinomas.
Oncotarget. 2017 Oct 24;8(61):104113-104122. doi: 10.18632/oncotarget.22020. eCollection 2017 Nov 28.
8
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
10
Revisiting olfactory receptors as putative drivers of cancer.
Wellcome Open Res. 2017 Feb 10;2:9. doi: 10.12688/wellcomeopenres.10646.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验