Suppr超能文献

肺部的通胀不稳定性:大变形下具有波浪形纤维的厚壁肺泡的分析模型。

Inflation instability in the lung: an analytical model of a thick-walled alveolus with wavy fibres under large deformations.

机构信息

Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.

Philips Research, Cambridge, MA, USA.

出版信息

J R Soc Interface. 2021 Oct;18(183):20210594. doi: 10.1098/rsif.2021.0594. Epub 2021 Oct 13.

Abstract

Inflation of hollow elastic structures can become unstable and exhibit a runaway phenomenon if the tension in their walls does not rise rapidly enough with increasing volume. Biological systems avoid such inflation instability for reasons that remain poorly understood. This is best exemplified by the lung, which inflates over its functional volume range without instability. The goal of this study was to determine how the constituents of lung parenchyma determine tissue stresses that protect alveoli from instability-related overdistension during inflation. We present an analytical model of a thick-walled alveolus composed of wavy elastic fibres, and investigate its pressure-volume behaviour under large deformations. Using second-harmonic generation imaging, we found that collagen waviness follows a beta distribution. Using this distribution to fit human pressure-volume curves, we estimated collagen and elastin effective stiffnesses to be 1247 kPa and 18.3 kPa, respectively. Furthermore, we demonstrate that linearly elastic but wavy collagen fibres are sufficient to achieve inflation stability within the physiological pressure range if the alveolar thickness-to-radius ratio is greater than 0.05. Our model thus identifies the constraints on alveolar geometry and collagen waviness required for inflation stability and provides a multiscale link between alveolar pressure and stresses on fibres in healthy and diseased lungs.

摘要

如果空心弹性结构的壁张力不能随着体积的增加而迅速增加,那么其膨胀就会变得不稳定,并表现出失控现象。由于原因尚不清楚,生物系统可以避免这种膨胀不稳定性。这在肺部表现得最为明显,肺部在其功能体积范围内充气而不会出现不稳定。本研究的目的是确定肺实质的组成部分如何确定组织应力,以在充气过程中防止肺泡因与不稳定相关的过度膨胀而发生过度膨胀。我们提出了一种由波浪形弹性纤维组成的厚壁肺泡的分析模型,并研究了其在大变形下的压力-体积行为。通过二次谐波产生成像,我们发现胶原蛋白的波纹遵循β分布。使用该分布拟合人体压力-体积曲线,我们估计胶原蛋白和弹性蛋白的有效刚度分别为 1247kPa 和 18.3kPa。此外,我们证明如果肺泡厚度与半径之比大于 0.05,那么即使是线性弹性但具有波纹的胶原蛋白纤维也足以在生理压力范围内实现充气稳定性。因此,我们的模型确定了充气稳定性所需的肺泡几何形状和胶原蛋白波纹的限制,并为健康和患病肺部的肺泡压力与纤维上的应力之间提供了一种多尺度联系。

相似文献

1
Inflation instability in the lung: an analytical model of a thick-walled alveolus with wavy fibres under large deformations.
J R Soc Interface. 2021 Oct;18(183):20210594. doi: 10.1098/rsif.2021.0594. Epub 2021 Oct 13.
3
Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung.
Crit Care Med. 2003 Apr;31(4):1126-33. doi: 10.1097/01.CCM.0000059997.90832.29.
4
Alveolar septal structure in different species.
J Appl Physiol (1985). 1994 Sep;77(3):1060-6. doi: 10.1152/jappl.1994.77.3.1060.
5
A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways.
J Biomech. 2013 Jan 18;46(2):319-28. doi: 10.1016/j.jbiomech.2012.11.031. Epub 2012 Dec 9.
6
An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
J Appl Physiol (1985). 2015 Aug 1;119(3):190-201. doi: 10.1152/japplphysiol.00112.2015. Epub 2015 May 28.
7
The effect of tissue elastic properties and surfactant on alveolar stability.
J Appl Physiol (1985). 2010 Nov;109(5):1369-77. doi: 10.1152/japplphysiol.00844.2009. Epub 2010 Aug 19.
10
Evidence for age-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in older age.
J Appl Physiol (1985). 2017 Jul 1;123(1):79-87. doi: 10.1152/japplphysiol.00208.2016. Epub 2017 Apr 27.

引用本文的文献

2
A Personalized Spring Network Representation of Emphysematous Lungs From CT Images.
Front Netw Physiol. 2022 Mar 18;2:828157. doi: 10.3389/fnetp.2022.828157. eCollection 2022.
3
Mechanics of lung cancer: A finite element model shows strain amplification during early tumorigenesis.
PLoS Comput Biol. 2022 Oct 24;18(10):e1010153. doi: 10.1371/journal.pcbi.1010153. eCollection 2022 Oct.
5
Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues.
Compr Physiol. 2022 Jun 29;12(3):3559-3574. doi: 10.1002/cphy.c210033.
6
Computational lung modelling in respiratory medicine.
J R Soc Interface. 2022 Jun;19(191):20220062. doi: 10.1098/rsif.2022.0062. Epub 2022 Jun 8.

本文引用的文献

1
A viscoelastic two-dimensional network model of the lung extracellular matrix.
Biomech Model Mechanobiol. 2020 Dec;19(6):2241-2253. doi: 10.1007/s10237-020-01336-1. Epub 2020 May 14.
2
Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
Acta Biomater. 2019 Jul 1;92:265-276. doi: 10.1016/j.actbio.2019.05.023. Epub 2019 May 11.
3
Diffuse and nonlinear imaging of multiscale vascular parameters for in vivo monitoring of preclinical mammary tumors.
J Biophotonics. 2019 Jun;12(6):e201800379. doi: 10.1002/jbio.201800379. Epub 2019 Mar 11.
4
The micromechanics of lung alveoli: structure and function of surfactant and tissue components.
Histochem Cell Biol. 2018 Dec;150(6):661-676. doi: 10.1007/s00418-018-1747-9. Epub 2018 Nov 2.
5
Alveolar Micromechanics in Bleomycin-induced Lung Injury.
Am J Respir Cell Mol Biol. 2018 Dec;59(6):757-769. doi: 10.1165/rcmb.2018-0044OC.
6
Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips.
Front Physiol. 2016 Jul 12;7:287. doi: 10.3389/fphys.2016.00287. eCollection 2016.
7
Measurement of Elastic Modulus of Collagen Type I Single Fiber.
PLoS One. 2016 Jan 22;11(1):e0145711. doi: 10.1371/journal.pone.0145711. eCollection 2016.
8
Stress controls the mechanics of collagen networks.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9573-8. doi: 10.1073/pnas.1504258112. Epub 2015 Jul 20.
9
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
10
Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure.
Nat Protoc. 2012 Mar 8;7(4):654-69. doi: 10.1038/nprot.2012.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验