Suppr超能文献

衰老的代谢根源:干预的机制和机会。

The metabolic roots of senescence: mechanisms and opportunities for intervention.

机构信息

Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.

Buck Institute for Research on Aging, Novato, CA, USA.

出版信息

Nat Metab. 2021 Oct;3(10):1290-1301. doi: 10.1038/s42255-021-00483-8. Epub 2021 Oct 18.

Abstract

Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.

摘要

细胞衰老导致永久性增殖停滞,并伴有多种表型变化。这些变化之一是释放许多被称为衰老相关分泌表型(SASP)的生物活性分子。越来越多的文献表明,衰老和 SASP 都对细胞和机体的代谢状态敏感,而代谢状态又反过来可以驱动与代谢功能障碍相关的表型。在这里,我们回顾了将衰老和代谢联系起来的现有文献,着眼于细胞水平上的发现,包括诱导衰老的代谢物以及与衰老相关的细胞代谢改变。此外,我们还考虑了针对代谢或衰老细胞的干预措施如何相互影响,并减轻细胞衰老的一些促衰老效应。我们的结论是,最有效的干预措施可能会打破一个退化的反馈循环,即细胞衰老促进代谢疾病,而代谢疾病又反过来促进衰老。

相似文献

1
The metabolic roots of senescence: mechanisms and opportunities for intervention.
Nat Metab. 2021 Oct;3(10):1290-1301. doi: 10.1038/s42255-021-00483-8. Epub 2021 Oct 18.
3
mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership.
Int J Mol Sci. 2021 Jul 29;22(15):8149. doi: 10.3390/ijms22158149.
4
Cellular Senescence: A Translational Perspective.
EBioMedicine. 2017 Jul;21:21-28. doi: 10.1016/j.ebiom.2017.04.013. Epub 2017 Apr 12.
5
NAD supplementation prevents STING-induced senescence in CD8 T cells by improving mitochondrial homeostasis.
J Cell Biochem. 2024 Mar;125(3):e30522. doi: 10.1002/jcb.30522. Epub 2024 Jan 15.
6
Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype.
Expert Opin Ther Targets. 2019 Dec;23(12):1041-1051. doi: 10.1080/14728222.2019.1565658. Epub 2019 Jan 15.
7
Senescent cells at the crossroads of aging, disease, and tissue homeostasis.
Aging Cell. 2024 Jan;23(1):e13988. doi: 10.1111/acel.13988. Epub 2023 Sep 20.
8
Targeting Cell Senescence for the Treatment of Age-Related Bone Loss.
Curr Osteoporos Rep. 2019 Apr;17(2):70-85. doi: 10.1007/s11914-019-00504-2.
9
How autophagy both activates and inhibits cellular senescence.
Autophagy. 2016 May 3;12(5):898-9. doi: 10.1080/15548627.2015.1121361.
10
A nutrigeroscience approach: Dietary macronutrients and cellular senescence.
Cell Metab. 2024 Sep 3;36(9):1914-1944. doi: 10.1016/j.cmet.2024.07.025. Epub 2024 Aug 22.

引用本文的文献

1
Unravelling the genetics and epigenetics of the ageing tumour microenvironment in cancer.
Nat Rev Cancer. 2025 Sep 8. doi: 10.1038/s41568-025-00868-x.
2
Targeting immunosenescence and inflammaging: advancing longevity research.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01527-9.
3
Interrogating the regulatory epigenome of cellular senescence.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
5
The Role of Senolytics in Osteoporosis.
Biomolecules. 2025 Aug 16;15(8):1176. doi: 10.3390/biom15081176.
6
Cellular Models of Aging and Senescence.
Cells. 2025 Aug 18;14(16):1278. doi: 10.3390/cells14161278.
7
Mitochondrial-encoded peptide MOTS-c prevents pancreatic islet cell senescence to delay diabetes.
Exp Mol Med. 2025 Aug;57(8):1861-1877. doi: 10.1038/s12276-025-01521-1. Epub 2025 Aug 25.
10
Metabolic regulation of immunological aging.
Nat Aging. 2025 Aug;5(8):1425-1440. doi: 10.1038/s43587-025-00921-2. Epub 2025 Aug 14.

本文引用的文献

1
Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression.
Mol Cell. 2021 May 6;81(9):2041-2052.e6. doi: 10.1016/j.molcel.2021.03.018. Epub 2021 Apr 5.
2
To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes.
Ageing Res Rev. 2021 May;67:101267. doi: 10.1016/j.arr.2021.101267. Epub 2021 Feb 5.
3
Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging.
Nat Commun. 2021 Feb 1;12(1):720. doi: 10.1038/s41467-021-20993-z.
4
Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells.
Aging Cell. 2021 Feb;20(2):e13317. doi: 10.1111/acel.13317. Epub 2021 Feb 1.
5
Clinical course of COVID-19 patients needing supplemental oxygen outside the intensive care unit.
Sci Rep. 2021 Jan 26;11(1):2256. doi: 10.1038/s41598-021-81444-9.
6
Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders.
Science. 2021 Jan 15;371(6526):265-270. doi: 10.1126/science.abb5916.
7
NAD metabolism and its roles in cellular processes during ageing.
Nat Rev Mol Cell Biol. 2021 Feb;22(2):119-141. doi: 10.1038/s41580-020-00313-x. Epub 2020 Dec 22.
9
CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD and NMN levels.
Nat Metab. 2020 Nov;2(11):1284-1304. doi: 10.1038/s42255-020-00298-z. Epub 2020 Nov 16.
10
Senescent cells promote tissue NAD decline during ageing via the activation of CD38 macrophages.
Nat Metab. 2020 Nov;2(11):1265-1283. doi: 10.1038/s42255-020-00305-3. Epub 2020 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验