Suppr超能文献

小鼠初级视觉皮层中稳态可塑性的发育调控。

Developmental Regulation of Homeostatic Plasticity in Mouse Primary Visual Cortex.

机构信息

Department of Biology, Brandeis University, Waltham, Massachusetts 02453.

Department of Biology, Brandeis University, Waltham, Massachusetts 02453

出版信息

J Neurosci. 2021 Dec 1;41(48):9891-9905. doi: 10.1523/JNEUROSCI.1200-21.2021. Epub 2021 Oct 22.

Abstract

Homeostatic plasticity maintains network stability by adjusting excitation, inhibition, or the intrinsic excitability of neurons, but the developmental regulation and coordination of these distinct forms of homeostatic plasticity remains poorly understood. A major contributor to this information gap is the lack of a uniform paradigm for chronically manipulating activity at different developmental stages. To overcome this limitation, we used designer receptors exclusively activated by designer drugs (DREADDs) to directly suppress neuronal activity in layer2/3 (L2/3) of mouse primary visual cortex of either sex at two important developmental timepoints: the classic visual system critical period [CP; postnatal day 24 (P24) to P29], and adulthood (P45 to P55). We show that 24 h of DREADD-mediated activity suppression simultaneously induces excitatory synaptic scaling up and intrinsic homeostatic plasticity in L2/3 pyramidal neurons during the CP, consistent with previous observations using prolonged visual deprivation. Importantly, manipulations known to block these forms of homeostatic plasticity when induced pharmacologically or via visual deprivation also prevented DREADD-induced homeostatic plasticity. We next used the same paradigm to suppress activity in adult animals. Surprisingly, while excitatory synaptic scaling persisted into adulthood, intrinsic homeostatic plasticity was completely absent. Finally, we found that homeostatic changes in quantal inhibitory input onto L2/3 pyramidal neurons were absent during the CP but were present in adults. Thus, the same population of neurons can express distinct sets of homeostatic plasticity mechanisms at different development stages. Our findings suggest that homeostatic forms of plasticity can be recruited in a modular manner according to the evolving needs of a developing neural circuit. Developing brain circuits are subject to dramatic changes in inputs that could destabilize activity if left uncompensated. This compensation is achieved through a set of homeostatic plasticity mechanisms that provide slow, negative feedback adjustments to excitability. Given that circuits are subject to very different destabilizing forces during distinct developmental stages, the forms of homeostatic plasticity present in the network must be tuned to these evolving needs. Here we developed a method to induce comparable homeostatic compensation during distinct developmental windows and found that neurons in the juvenile and mature brain engage strikingly different forms of homeostatic plasticity. Thus, homeostatic mechanisms can be recruited in a modular manner according to the developmental needs of the circuit.

摘要

内稳态可塑性通过调节神经元的兴奋、抑制或固有兴奋性来维持网络稳定性,但这些不同形式的内稳态可塑性的发育调节和协调仍知之甚少。造成这种信息差距的一个主要原因是缺乏一种在不同发育阶段长期控制活动的统一范式。为了克服这一限制,我们使用了 Designer Receptors Exclusively Activated by Designer Drugs(DREADDs),在两个重要的发育时间点,即经典视觉系统关键期[CP;出生后第 24 天(P24)至 P29]和成年期(P45 至 P55),直接抑制雄性和雌性小鼠初级视觉皮层第 2/3 层(L2/3)的神经元活动。我们表明,24 小时的 DREADD 介导的活动抑制,在 CP 期间同时诱导 L2/3 锥体神经元的兴奋性突触缩放和固有内稳态可塑性,这与使用长时间视觉剥夺的先前观察结果一致。重要的是,当通过药理学或视觉剥夺诱导时,已知会阻止这些形式的内稳态可塑性的操作也阻止了 DREADD 诱导的内稳态可塑性。我们接下来在成年动物中使用相同的范式来抑制活动。令人惊讶的是,虽然兴奋性突触缩放持续到成年期,但固有内稳态可塑性完全不存在。最后,我们发现,在 CP 期间,L2/3 锥体神经元上的抑制性量子输入的内稳态变化不存在,但在成年期存在。因此,在不同的发育阶段,同一神经元群体可以表达不同的内稳态可塑性机制。我们的研究结果表明,内稳态形式的可塑性可以根据发育中神经回路的不断发展的需求以模块化的方式被招募。发育中的大脑回路会受到输入的剧烈变化的影响,如果不进行补偿,这些变化可能会使活动不稳定。这种补偿是通过一系列内稳态可塑性机制实现的,这些机制对内兴奋性提供缓慢的负反馈调节。鉴于在不同的发育阶段,回路会受到非常不同的去稳定力的影响,因此,网络中存在的内稳态可塑性形式必须针对这些不断发展的需求进行调整。在这里,我们开发了一种在不同发育窗口诱导类似内稳态补偿的方法,并发现幼年期和成熟期大脑中的神经元采用了截然不同的内稳态可塑性形式。因此,内稳态机制可以根据回路的发育需求以模块化的方式被招募。

相似文献

1
Developmental Regulation of Homeostatic Plasticity in Mouse Primary Visual Cortex.
J Neurosci. 2021 Dec 1;41(48):9891-9905. doi: 10.1523/JNEUROSCI.1200-21.2021. Epub 2021 Oct 22.
4
Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex.
J Neurosci. 2019 Sep 25;39(39):7664-7673. doi: 10.1523/JNEUROSCI.2117-18.2019. Epub 2019 Aug 14.
6
Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1.
J Neurosci. 2018 May 16;38(20):4749-4761. doi: 10.1523/JNEUROSCI.3628-17.2018. Epub 2018 Apr 20.
7
M-Current Inhibition in Hippocampal Excitatory Neurons Triggers Intrinsic and Synaptic Homeostatic Responses at Different Temporal Scales.
J Neurosci. 2020 May 6;40(19):3694-3706. doi: 10.1523/JNEUROSCI.1914-19.2020. Epub 2020 Apr 10.
8
Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca-Permeable AMPA Receptors.
J Neurosci. 2018 Mar 14;38(11):2863-2876. doi: 10.1523/JNEUROSCI.2362-17.2018. Epub 2018 Feb 13.
10
Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
J Neurophysiol. 2011 Nov;106(5):2499-505. doi: 10.1152/jn.00111.2011. Epub 2011 Aug 3.

引用本文的文献

1
Learning-Associated Flexibility of Cortical Taste Coding Is Impaired in Shank3 Knockout Mice.
bioRxiv. 2025 Aug 21:2025.08.21.671527. doi: 10.1101/2025.08.21.671527.
2
Early-life adversities compromise behavioral development in male and female mice heterozygous for CNTNAP2.
Neurobiol Stress. 2025 Apr 22;36:100726. doi: 10.1016/j.ynstr.2025.100726. eCollection 2025 May.
3
Long-term muscarinic inhibition increases intrinsic excitability through the upregulation of A-type potassium currents in cortical neurons.
Front Cell Dev Biol. 2025 May 27;13:1570424. doi: 10.3389/fcell.2025.1570424. eCollection 2025.
4
Unreliable homeostatic action potential broadening in cultured dissociated neurons.
bioRxiv. 2025 May 15:2025.05.09.653135. doi: 10.1101/2025.05.09.653135.
5
Modular arrangement of synaptic and intrinsic homeostatic plasticity within visual cortical circuits.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2504775122. doi: 10.1073/pnas.2504775122. Epub 2025 May 30.
6
8
Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex.
bioRxiv. 2025 Jan 28:2025.01.28.635373. doi: 10.1101/2025.01.28.635373.
9
Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.
PLoS Comput Biol. 2025 Jan 6;21(1):e1012723. doi: 10.1371/journal.pcbi.1012723. eCollection 2025 Jan.
10
Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex.
J Neurophysiol. 2025 Feb 1;133(2):399-413. doi: 10.1152/jn.00326.2024. Epub 2024 Dec 31.

本文引用的文献

1
Homeostatic synaptic scaling establishes the specificity of an associative memory.
Curr Biol. 2021 Jun 7;31(11):2274-2285.e5. doi: 10.1016/j.cub.2021.03.024. Epub 2021 Apr 1.
3
Sleep Promotes Downward Firing Rate Homeostasis.
Neuron. 2021 Feb 3;109(3):530-544.e6. doi: 10.1016/j.neuron.2020.11.001. Epub 2020 Nov 23.
4
Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24514-24525. doi: 10.1073/pnas.1918368117. Epub 2020 Sep 11.
5
Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex.
Front Cell Neurosci. 2020 Apr 21;14:76. doi: 10.3389/fncel.2020.00076. eCollection 2020.
6
Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent V1.
Neuron. 2020 Jun 3;106(5):769-777.e4. doi: 10.1016/j.neuron.2020.02.033. Epub 2020 Mar 20.
7
Rapid and active stabilization of visual cortical firing rates across light-dark transitions.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18068-18077. doi: 10.1073/pnas.1906595116. Epub 2019 Jul 31.
9
Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex.
Sci Rep. 2017 Dec 12;7(1):17423. doi: 10.1038/s41598-017-17711-5.
10
Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715). doi: 10.1098/rstb.2016.0157.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验