Suppr超能文献

使用可解释深度学习技术对非人类灵长类动物硬膜外 ECoG 进行分析。

Non-human primate epidural ECoG analysis using explainable deep learning technology.

机构信息

Department of Neurology, University of California, San Francisco, CA, United States of America.

Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.

出版信息

J Neural Eng. 2021 Nov 25;18(6). doi: 10.1088/1741-2552/ac3314.

Abstract

With the development in the field of neural networks,(XAI), is being studied to ensure that artificial intelligence models can be explained. There are some attempts to apply neural networks to neuroscientific studies to explain neurophysiological information with high machine learning performances. However, most of those studies have simply visualized features extracted from XAI and seem to lack an active neuroscientific interpretation of those features. In this study, we have tried to actively explain the high-dimensional learning features contained in the neurophysiological information extracted from XAI, compared with the previously reported neuroscientific results.. We designed a deep neural network classifier using 3D information (3D DNN) and a 3D class activation map (3D CAM) to visualize high-dimensional classification features. We used those tools to classify monkey electrocorticogram (ECoG) data obtained from the unimanual and bimanual movement experiment.. The 3D DNN showed better classification accuracy than other machine learning techniques, such as 2D DNN. Unexpectedly, the activation weight in the 3D CAM analysis was high in the ipsilateral motor and somatosensory cortex regions, whereas the gamma-band power was activated in the contralateral areas during unimanual movement, which suggests that the brain signal acquired from the motor cortex contains information about both contralateral movement and ipsilateral movement. Moreover, the hand-movement classification system used critical temporal information at movement onset and offset when classifying bimanual movements.As far as we know, this is the first study to use high-dimensional neurophysiological information (spatial, spectral, and temporal) with the deep learning method, reconstruct those features, and explain how the neural network works. We expect that our methods can be widely applied and used in neuroscience and electrophysiology research from the point of view of the explainability of XAI as well as its performance.

摘要

随着神经网络领域的发展,可解释性人工智能(XAI)正被研究以确保人工智能模型可以被解释。已经有一些尝试将神经网络应用于神经科学研究,以用机器学习的高性能来解释神经生理信息。然而,这些研究中的大多数只是简单地可视化了从 XAI 中提取的特征,并且似乎缺乏对这些特征的积极神经科学解释。在这项研究中,我们试图积极解释从 XAI 中提取的神经生理信息中包含的高维学习特征,与之前报道的神经科学结果相比。我们设计了一个使用 3D 信息(3D DNN)和 3D 类激活图(3D CAM)的深度神经网络分类器,用于可视化高维分类特征。我们使用这些工具来对从单臂和双臂运动实验中获得的猴子脑电图(ECoG)数据进行分类。3D DNN 显示出比其他机器学习技术(如 2D DNN)更好的分类精度。出乎意料的是,在 3D CAM 分析中,激活权重在同侧运动和体感皮层区域较高,而在单臂运动期间,γ频带功率在对侧区域被激活,这表明从运动皮层获得的大脑信号包含关于对侧运动和同侧运动的信息。此外,在对双臂运动进行分类时,手运动分类系统在运动开始和结束时使用了关键的时间信息。据我们所知,这是首次使用深度学习方法对高维神经生理信息(空间、频谱和时间)进行研究,重建这些特征,并解释神经网络是如何工作的。我们期望我们的方法可以从 XAI 的可解释性及其性能的角度在神经科学和电生理学研究中得到广泛应用和使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验