Suppr超能文献

单细胞转录组学揭示了 Shp2 在 Myc 驱动的肝肿瘤细胞和微环境中的相反作用。

Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment.

机构信息

Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA.

Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

Cell Rep. 2021 Nov 9;37(6):109974. doi: 10.1016/j.celrep.2021.109974.

Abstract

The mechanisms of Myc-driven liver tumorigenesis are inadequately understood. Herein we show that Myc-driven hepatocellular carcinoma (HCC) is dramatically aggravated in mice with hepatocyte-specific Ptpn11/Shp2 deletion. However, Myc-induced tumors develop selectively from the rare Shp2-positive hepatocytes in Shp2-deficent liver, and Myc-driven oncogenesis depends on an intact Ras-Erk signaling promoted by Shp2 to sustain Myc stability. Despite a stringent requirement of Shp2 cell autonomously, Shp2 deletion induces an immunosuppressive environment, resulting in defective clearance of tumor-initiating cells and aggressive tumor progression. The basal Wnt/β-catenin signaling is upregulated in Shp2-deficient liver, which is further augmented by Myc transfection. Ablating Ctnnb1 suppresses Myc-induced HCC in Shp2-deficient livers, revealing an essential role of β-catenin. Consistently, Myc overexpression and CTNNB1 mutations are frequently co-detected in HCC patients with poor prognosis. These data elucidate complex mechanisms of liver tumorigenesis driven by cell-intrinsic oncogenic signaling in cooperation with a tumor-promoting microenvironment generated by disrupting the specific oncogenic pathway.

摘要

Myc 驱动的肝肿瘤发生机制尚未充分阐明。在此,我们发现,肝细胞特异性 Ptpn11/Shp2 缺失会显著加剧 Myc 驱动的肝细胞癌(HCC)。然而,Myc 诱导的肿瘤选择性地从 Shp2 缺陷肝脏中的罕见 Shp2 阳性肝细胞中发展,并且 Myc 驱动的致癌作用取决于 Shp2 促进的完整 Ras-Erk 信号,以维持 Myc 的稳定性。尽管 Shp2 在细胞自主方面有严格的要求,但 Shp2 的缺失会诱导免疫抑制环境,导致肿瘤起始细胞清除缺陷和侵袭性肿瘤进展。Shp2 缺陷肝脏中的基础 Wnt/β-catenin 信号被上调,而 Myc 转染进一步增强了这种信号。敲除 Ctnnb1 可抑制 Shp2 缺陷肝脏中的 Myc 诱导 HCC,表明 β-catenin 发挥了重要作用。一致地,Myc 过表达和 CTNNB1 突变在预后不良的 HCC 患者中经常同时检测到。这些数据阐明了由细胞内在致癌信号驱动的肝肿瘤发生的复杂机制,该机制与通过破坏特定致癌途径产生的促进肿瘤的微环境协同作用。

相似文献

2
Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET.
J Hepatol. 2018 Jul;69(1):79-88. doi: 10.1016/j.jhep.2018.02.014. Epub 2018 Mar 2.
3
β-catenin deficiency in hepatocytes aggravates hepatocarcinogenesis driven by oncogenic β-catenin and MET.
Hepatology. 2018 May;67(5):1807-1822. doi: 10.1002/hep.29661. Epub 2018 Apr 6.
4
GATA5 inhibits hepatocellular carcinoma cells malignant behaviours by blocking expression of reprogramming genes.
J Cell Mol Med. 2019 Apr;23(4):2536-2548. doi: 10.1111/jcmm.14144. Epub 2019 Jan 22.
5
Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis.
Cancer Cell. 2011 May 17;19(5):629-39. doi: 10.1016/j.ccr.2011.03.023.
6
Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features.
J Hepatol. 2021 Mar;74(3):613-626. doi: 10.1016/j.jhep.2020.09.032. Epub 2020 Oct 8.
7
Steroid Receptor Coactivator 1 Promotes Human Hepatocellular Carcinoma Progression by Enhancing Wnt/β-Catenin Signaling.
J Biol Chem. 2015 Jul 24;290(30):18596-608. doi: 10.1074/jbc.M115.640490. Epub 2015 Jun 16.
8
AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation.
J Hepatol. 2018 Jun;68(6):1203-1213. doi: 10.1016/j.jhep.2017.12.018. Epub 2018 Mar 7.
9
A positive feedback loop involving the LINC00346/β-catenin/MYC axis promotes hepatocellular carcinoma development.
Cell Oncol (Dordr). 2020 Feb;43(1):137-153. doi: 10.1007/s13402-019-00478-4. Epub 2019 Nov 5.
10

引用本文的文献

1
Complex Roles of /SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy.
Annu Rev Cancer Biol. 2024 Jun;8(1):15-33. doi: 10.1146/annurev-cancerbio-062722-013740. Epub 2023 Dec 6.
2
Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis.
Nat Genet. 2025 Mar;57(3):668-679. doi: 10.1038/s41588-025-02081-w. Epub 2025 Feb 13.
3
Bile acid synthesis impedes tumor-specific T cell responses during liver cancer.
Science. 2025 Jan 10;387(6730):192-201. doi: 10.1126/science.adl4100. Epub 2025 Jan 9.
4
Precision models in hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 2025 Mar;22(3):191-205. doi: 10.1038/s41575-024-01024-w. Epub 2024 Dec 11.
5
Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC.
Oncogene. 2025 Feb;44(3):130-146. doi: 10.1038/s41388-024-03208-9. Epub 2024 Nov 3.
6
Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases.
Acta Pharm Sin B. 2024 Aug;14(8):3295-3311. doi: 10.1016/j.apsb.2024.05.006. Epub 2024 May 13.
7
Co-targeting SOS1 enhances the antitumor effects of KRAS inhibitors by addressing intrinsic and acquired resistance.
Nat Cancer. 2024 Sep;5(9):1352-1370. doi: 10.1038/s43018-024-00800-6. Epub 2024 Aug 5.
8
G-CSF promotes the development of hepatocellular carcinoma by activating the PI3K/AKT/mTOR pathway in TAM.
Aging (Albany NY). 2024 Jul 1;16(13):10799-10812. doi: 10.18632/aging.205922.
9
Tyrosine phosphatase SHP2 in solid tumors - bull's eye for targeted therapy?
Front Immunol. 2024 Mar 5;15:1340726. doi: 10.3389/fimmu.2024.1340726. eCollection 2024.
10
Cancer and Autism: How PTEN Mutations Degrade Function at the Membrane and Isoform Expression in the Human Brain.
J Mol Biol. 2023 Dec 15;435(24):168354. doi: 10.1016/j.jmb.2023.168354. Epub 2023 Nov 5.

本文引用的文献

1
Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment.
Curr Opin Chem Biol. 2021 Jun;62:1-12. doi: 10.1016/j.cbpa.2020.11.007. Epub 2021 Jan 6.
2
Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma.
N Engl J Med. 2020 May 14;382(20):1894-1905. doi: 10.1056/NEJMoa1915745.
3
Cooperation Between MYC and β-Catenin in Liver Tumorigenesis Requires Yap/Taz.
Hepatology. 2020 Oct;72(4):1430-1443. doi: 10.1002/hep.31120. Epub 2020 Jul 29.
4
Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma.
Cell. 2019 Oct 31;179(4):829-845.e20. doi: 10.1016/j.cell.2019.10.003.
5
Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer.
Cancer Cell. 2019 Oct 14;36(4):418-430.e6. doi: 10.1016/j.ccell.2019.08.007. Epub 2019 Oct 3.
6
LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis.
Cell. 2019 Sep 5;178(6):1478-1492.e20. doi: 10.1016/j.cell.2019.07.021. Epub 2019 Aug 29.
7
8
β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma.
Cancer Discov. 2019 Aug;9(8):1124-1141. doi: 10.1158/2159-8290.CD-19-0074. Epub 2019 Jun 11.
9
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
10
The mTORC2-Akt1 Cascade Is Crucial for c-Myc to Promote Hepatocarcinogenesis in Mice and Humans.
Hepatology. 2019 Nov;70(5):1600-1613. doi: 10.1002/hep.30697. Epub 2019 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验