Suppr超能文献

人体循环系统的微流控模型:用于探索机械生物学和疾病建模的多功能平台。

Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling.

作者信息

Nguyen Ngan, Thurgood Peter, Sekar Nadia Chandra, Chen Sheng, Pirogova Elena, Peter Karlheinz, Baratchi Sara, Khoshmanesh Khashayar

机构信息

School of Engineering, RMIT University, Melbourne, Australia.

School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.

出版信息

Biophys Rev. 2021 Jul 14;13(5):769-786. doi: 10.1007/s12551-021-00815-8. eCollection 2021 Oct.

Abstract

The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.

摘要

人体循环系统是一个奇妙的流体系统,对生物物理和生化信号非常敏感。当前的动物和细胞培养模型无法重现人体循环系统的功能特性,限制了我们全面理解这个多方面系统功能障碍背后复杂生物过程的能力。在本综述中,我们讨论了微流控系统重现人体循环系统生物物理、生化和功能特性的独特能力。我们还描述了微流控技术在探索心血管系统复杂力学生物学、心血管疾病机制研究以及筛选心血管药物方面的卓越能力,其额外好处是减少了对动物模型的需求。我们还讨论了这一令人兴奋的领域进一步发展的机会。

相似文献

1
Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling.
Biophys Rev. 2021 Jul 14;13(5):769-786. doi: 10.1007/s12551-021-00815-8. eCollection 2021 Oct.
2
Emerging Microfluidic Approaches for Platelet Mechanobiology and Interplay With Circulatory Systems.
Front Cardiovasc Med. 2021 Nov 25;8:766513. doi: 10.3389/fcvm.2021.766513. eCollection 2021.
3
Microfluidics for mechanobiology of model organisms.
Methods Cell Biol. 2018;146:217-259. doi: 10.1016/bs.mcb.2018.05.010. Epub 2018 Jul 14.
4
Microfluidic platforms for modeling biological barriers in the circulatory system.
Drug Discov Today. 2018 Apr;23(4):815-829. doi: 10.1016/j.drudis.2018.01.036. Epub 2018 Jan 31.
5
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Acc Chem Res. 2014 Apr 15;47(4):1165-73. doi: 10.1021/ar4002608. Epub 2014 Feb 20.
6
Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
Curr Pharm Des. 2018;24(45):5354-5366. doi: 10.2174/1381612825666190222143542.
7
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
9
Microfluidic organ-on-a-chip models of human liver tissue.
Acta Biomater. 2020 Oct 15;116:67-83. doi: 10.1016/j.actbio.2020.08.041. Epub 2020 Sep 2.
10
Modeling the Human Body on Microfluidic Chips.
Trends Biotechnol. 2021 Aug;39(8):838-852. doi: 10.1016/j.tibtech.2021.01.004. Epub 2021 Feb 10.

引用本文的文献

1
The effects of carotid plaque classification and bifurcation angle on plaque: a computational fluid dynamics simulation.
Front Physiol. 2025 Mar 21;16:1509875. doi: 10.3389/fphys.2025.1509875. eCollection 2025.
3
Mimicking blood and lymphatic vasculatures using microfluidic systems.
Biomicrofluidics. 2024 May 6;18(3):031502. doi: 10.1063/5.0175154. eCollection 2024 May.
4
Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning.
Biophys Rev. 2023 Jan 10;15(1):19-33. doi: 10.1007/s12551-022-01040-7. eCollection 2023 Feb.
5
A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep Bone Marrow.
Adv Healthc Mater. 2023 Mar;12(8):e2201830. doi: 10.1002/adhm.202201830. Epub 2023 Jan 8.
6
Basic science research opportunities in thrombosis and hemostasis: Communication from the SSC of the ISTH.
J Thromb Haemost. 2022 Jun;20(6):1496-1506. doi: 10.1111/jth.15718. Epub 2022 Apr 22.
7
Studying the Mechanobiology of Aortic Endothelial Cells Under Cyclic Stretch Using a Modular 3D Printed System.
Front Bioeng Biotechnol. 2021 Dec 9;9:791116. doi: 10.3389/fbioe.2021.791116. eCollection 2021.
8
- 2021, the year that was.
Biophys Rev. 2021 Nov 22;13(6):803-811. doi: 10.1007/s12551-021-00917-3. eCollection 2021 Dec.

本文引用的文献

1
Characterization of immune cell migration using microfabrication.
Biophys Rev. 2021 Feb 11;13(2):185-202. doi: 10.1007/s12551-021-00787-9. eCollection 2021 Apr.
2
Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies.
Biosens Bioelectron. 2021 Mar 15;176:112946. doi: 10.1016/j.bios.2020.112946. Epub 2020 Dec 30.
3
Modular Microphysiological System for Modeling of Biologic Barrier Function.
Front Bioeng Biotechnol. 2020 Nov 12;8:581163. doi: 10.3389/fbioe.2020.581163. eCollection 2020.
4
Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening.
Front Bioeng Biotechnol. 2020 Nov 9;8:595497. doi: 10.3389/fbioe.2020.595497. eCollection 2020.
5
The cellular mechanobiology of aging: from biology to mechanics.
Ann N Y Acad Sci. 2021 May;1491(1):3-24. doi: 10.1111/nyas.14529. Epub 2020 Nov 24.
6
Modeling early stage atherosclerosis in a primary human vascular microphysiological system.
Nat Commun. 2020 Oct 27;11(1):5426. doi: 10.1038/s41467-020-19197-8.
7
Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells.
J Cell Physiol. 2021 Apr;236(4):2976-2987. doi: 10.1002/jcp.30056. Epub 2020 Sep 22.
8
An inflammatory vascular endothelium-mimicking microfluidic device to enable leukocyte rolling and adhesion for rapid infection diagnosis.
Biosens Bioelectron. 2020 Nov 15;168:112558. doi: 10.1016/j.bios.2020.112558. Epub 2020 Aug 29.
9
Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices.
Sci Rep. 2020 Aug 10;10(1):13453. doi: 10.1038/s41598-020-70428-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验