Suppr超能文献

协同不对称阳离子键催化作用。

Cooperative Asymmetric Cation-Binding Catalysis.

机构信息

Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 Korea.

Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.

出版信息

Acc Chem Res. 2021 Dec 7;54(23):4319-4333. doi: 10.1021/acs.accounts.1c00400. Epub 2021 Nov 16.

Abstract

Asymmetric cation-binding catalysis in principle enables the use of (alkali) metal salts, otherwise insoluble in organic solvents, as reagents and effectors in enantioselective reactions. However, this concept has been a formidable challenge due to the difficulties associated with creating a highly organized chiral environment for cations and anions simultaneously. Over the last four decades, various chiral crown ethers have been developed as cation-binding phase-transfer catalysts and examined in asymmetric catalysis. However, the limited ability of chiral crown ethers to generate soluble reactive anions in a confined chiral cage offers a restricted reaction scope and unsatisfactory chirality induction. To address the constraints of monofunctional chiral crown ethers as cation-binding catalysts, it is therefore desirable to develop a cooperative cation-binding catalyst possessing secondary binding sites for anions, which enables the generation of a reactive anion within a chiral cage of a catalyst. This account summarizes our design, development, and applications of chiral BINOL-based oligoethylene glycols (oligoEGs) as a new type of bifunctional cation-binding catalyst. We initially found that achiral oligoEGs were efficient promoters in nucleophilic fluorination with potassium fluoride. Thereby, we hypothesized that, by breaking the closed cyclic ether unit of chiral crown ethers, the free terminal -OH groups could activate the electrophiles by hydrogen bonding whereas the ether oxygens could act as the Lewis base to coordinate metal ions, thus generating soluble anions in a confined chiral cage. This hypothesis was realized by synthesizing a series of chiral variants of oligoEGs by connecting two 3,3'-disubstituted-BINOL units with glycol linkers. Readily available BINOL-based chiral oligoEGs enabled numerous asymmetric transformations out of the reach of chiral monofunctional crown ether catalysts. We have demonstrated that this new type of bifunctional cation-binding catalysts can generate a soluble fluoride anion from alkali metal fluorides, which can be a versatile chiral promoter for diverse asymmetric catalytic reactions, kinetic resolution (selectivity factor of up to ∼2300), asymmetric protonation, Mannich reactions, tandem cyclization reactions, and the isomerization of allylic alcohols and hemithioacetals. We have also successfully utilized our chiral oligoEG catalysts along with alkali metal salts of carbon- and heteroatom-based nucleophiles, respectively, for asymmetric Strecker reactions and the asymmetric synthesis of chiral aminals. The power of our cooperative cation-binding catalysis was exemplified by kinetic resolution reactions of secondary alcohols, achieving highly enantioselective catalysis with only <1 ppm loading of an organocatalyst with high TOFs (up to ∼1300 h at 1 ppm catalyst loading). The broadness and generality of our cooperative asymmetric cation-binding catalysis can be ascribed, in a similar fashion, to active-site architectures of enzymes using allosteric interactions, highly confined chiral cages formed by the incorporation of alkali metal salts in the catalyst polyether chain backbone, and the cooperative activation of reacting partners by hydrogen-bonding and ion-ion interactions. Confining reactive components in such a chiral binding pocket leads to enhanced reactivity and efficient transfer of the stereochemical information.

摘要

手性阳离子结合催化原则上可以使(碱)金属盐作为试剂和效应物用于对映选择性反应,这些盐在有机溶剂中通常不溶。然而,由于同时为阳离子和阴离子创造高度有序的手性环境存在困难,这一概念一直是一个艰巨的挑战。在过去的四十年中,已经开发了各种手性冠醚作为阳离子结合相转移催化剂,并在不对称催化中进行了研究。然而,手性冠醚在受限的手性笼中生成可溶性反应阴离子的能力有限,提供了有限的反应范围和不理想的手性诱导。为了解决单官能手性冠醚作为阳离子结合催化剂的限制,因此理想的是开发一种具有阴离子次级结合位点的协同阳离子结合催化剂,该催化剂能够在催化剂的手性笼内生成反应性阴离子。本综述总结了我们作为一种新型双功能阳离子结合催化剂对手性 BINOL 基聚乙二醇(OligoEG)的设计、开发和应用。我们最初发现,非手性 OligoEG 是氟化钾亲核氟化反应的有效促进剂。因此,我们假设,通过打破手性冠醚的封闭环状醚单元,游离的末端-OH 基团可以通过氢键激活亲电试剂,而醚氧原子可以作为路易斯碱与金属离子配位,从而在手性笼内生成可溶性阴离子。通过用二醇连接体连接两个 3,3'-取代的 BINOL 单元合成了一系列手性 OligoEG,从而实现了这一假设。现成的基于 BINOL 的手性 OligoEG 使许多原本无法通过手性单功能冠醚催化剂实现的不对称转化成为可能。我们已经证明,这种新型双功能阳离子结合催化剂可以从碱金属氟化物中生成可溶性氟阴离子,该阴离子可以作为各种不对称催化反应的多功能手性促进剂,动力学拆分(选择性因子高达约 2300)、不对称质子化、Mannich 反应、串联环化反应和烯丙醇和半硫缩醛的异构化反应。我们还成功地使用我们的手性 OligoEG 催化剂以及碳和杂原子亲核试剂的碱金属盐,分别用于不对称 Streck 反应和手性亚胺的不对称合成。我们的协同阳离子结合催化的强大功能通过二级醇的动力学拆分反应得到了例证,仅使用 1 ppm 负载量的有机催化剂即可实现高度对映选择性催化,TOF 高达约 1300 h(在 1 ppm 催化剂负载量下)。我们的协同不对称阳离子结合催化的广泛性和通用性可以归因于酶的活性位点结构,通过在催化剂聚醚链主链中掺入碱金属盐形成高度受限的手性笼,以及通过氢键和离子-离子相互作用协同激活反应伙伴。将反应性成分限制在这种手性结合口袋中会导致反应性增强和立体化学信息的有效传递。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验