Suppr超能文献

《新冠肺炎动力学的艰难教训和转变建模趋势:多分辨率建模方法》

The Hard Lessons and Shifting Modeling Trends of COVID-19 Dynamics: Multiresolution Modeling Approach.

机构信息

Intercollegiate Biomathematics Alliance, Normal, IL, USA.

Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL, USA.

出版信息

Bull Math Biol. 2021 Nov 19;84(1):3. doi: 10.1007/s11538-021-00959-4.

Abstract

The COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction. Consolidating our understanding of model approaches to COVID-19 will assist policy makers in designing interventions that are not only maximally effective but also economically beneficial.

摘要

新冠疫情大流行使得流行病学家、建模人员和政策制定者成为全球讨论如何控制冠状病毒传播的焦点。建模方法面临的主要挑战包括实时预测病例、住院和死亡人数的变化,公共卫生政策的后果,了解如何最好地实施各种非药物干预措施和潜在的疫苗接种策略,因为现在已经有疫苗可供分发。在这里,我们:(i)仔细审查关于 COVID-19 建模的文献,以确定与开发适当模型以及收集精细调整数据相关的挑战,(ii)利用确定的挑战来建议前瞻性建模框架,通过该框架可以评估疫苗策略等适应性干预措施和诊断测试的使用,(iii)提供一种新的多分辨率建模框架,通过考虑相关利益相关者的参与视角来构建多目标优化问题,以进行疫情实时预测和未来预测。综合我们对 COVID-19 模型方法的理解,将有助于政策制定者设计不仅最有效而且经济上有益的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/636b/8602007/88c404e07f48/11538_2021_959_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验