Suppr超能文献

ROB-MEN:用于评估网络荟萃分析中因证据缺失导致偏倚风险的工具。

ROB-MEN: a tool to assess risk of bias due to missing evidence in network meta-analysis.

机构信息

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

Graduate School for Health Sciences, University of Bern, Bern, Switzerland.

出版信息

BMC Med. 2021 Nov 23;19(1):304. doi: 10.1186/s12916-021-02166-3.

Abstract

BACKGROUND

Selective outcome reporting and publication bias threaten the validity of systematic reviews and meta-analyses and can affect clinical decision-making. A rigorous method to evaluate the impact of this bias on the results of network meta-analyses of interventions is lacking. We present a tool to assess the Risk Of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN).

METHODS

ROB-MEN first evaluates the risk of bias due to missing evidence for each of the possible pairwise comparison that can be made between the interventions in the network. This step considers possible bias due to the presence of studies with unavailable results (within-study assessment of bias) and the potential for unpublished studies (across-study assessment of bias). The second step combines the judgements about the risk of bias due to missing evidence in pairwise comparisons with (i) the contribution of direct comparisons to the network meta-analysis estimates, (ii) possible small-study effects evaluated by network meta-regression, and (iii) any bias from unobserved comparisons. Then, a level of "low risk", "some concerns", or "high risk" for the bias due to missing evidence is assigned to each estimate, which is our tool's final output.

RESULTS

We describe the methodology of ROB-MEN step-by-step using an illustrative example from a published NMA of non-diagnostic modalities for the detection of coronary artery disease in patients with low risk acute coronary syndrome. We also report a full application of the tool on a larger and more complex published network of 18 drugs from head-to-head studies for the acute treatment of adults with major depressive disorder.

CONCLUSIONS

ROB-MEN is the first tool for evaluating the risk of bias due to missing evidence in network meta-analysis and applies to networks of all sizes and geometry. The use of ROB-MEN is facilitated by an R Shiny web application that produces the Pairwise Comparisons and ROB-MEN Table and is incorporated in the reporting bias domain of the CINeMA framework and software.

摘要

背景

选择性结果报告和发表偏倚威胁系统评价和荟萃分析的有效性,并可能影响临床决策。目前缺乏一种严格的方法来评估这种偏倚对干预措施网络荟萃分析结果的影响。我们提出了一种用于评估网络荟萃分析中缺失证据偏倚风险的工具(ROB-MEN)。

方法

ROB-MEN 首先评估网络中干预措施之间可能进行的每一对比较的缺失证据偏倚风险。这一步考虑了存在无法获得结果的研究(内部评估偏倚)和未发表研究的可能性(外部评估偏倚)导致的可能偏倚。第二步将成对比较中缺失证据偏倚风险的判断与(i)直接比较对网络荟萃分析估计的贡献、(ii)网络荟萃回归评估的可能小研究效应以及(iii)未观察到的比较偏倚相结合。然后,根据缺失证据偏倚的风险程度,为每个估计值分配“低风险”、“存在一些问题”或“高风险”的级别,这是我们工具的最终输出。

结果

我们使用已发表的低危急性冠脉综合征患者冠状动脉疾病非诊断性方法检测的网络荟萃分析的实例,逐步描述了 ROB-MEN 方法的步骤。我们还报告了在一个更大、更复杂的网络上应用该工具的情况,该网络由头对头研究中 18 种药物的网络组成,用于急性治疗成人重度抑郁症。

结论

ROB-MEN 是第一个用于评估网络荟萃分析中缺失证据偏倚风险的工具,适用于各种大小和几何形状的网络。ROB-MEN 工具的使用得到了一个 R Shiny 网络应用程序的支持,该程序生成了成对比较和 ROB-MEN 表,并被纳入了 CINeMA 框架和软件的报告偏倚领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6033/8609747/a9edc0d82799/12916_2021_2166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验