Suppr超能文献

利用离子淌度质谱法提高新生儿筛查的速度和选择性。

Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry.

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.

出版信息

Anal Chem. 2021 Dec 28;93(51):17094-17102. doi: 10.1021/acs.analchem.1c04267. Epub 2021 Dec 1.

Abstract

Detection and diagnosis of congenital disorders is the principal aim of newborn screening (NBS) programs worldwide. Mass spectrometry (MS) has become the preferred primary testing method for high-throughput NBS sampling because of its speed and selectivity. However, the ever-increasing list of NBS biomarkers included in expanding panels creates unique analytical challenges for multiplexed MS assays due to isobaric/isomeric overlap and chimeric fragmentation spectra. Since isobaric and isomeric systems limit the diagnostic power of current methods and require costly follow-up exams due to many false-positive results, here, we explore the utility of ion mobility spectrometry (IMS) to enhance the accuracy of MS assays for primary (tier 1) screening. Our results suggest that ∼400 IMS resolving power would be required to confidently assess most NBS biomarkers of interest in dried blood spots (DBSs) that currently require follow-up testing. While this level of selectivity is unobtainable with most commercially available platforms, the separations detailed here for a commercially available drift tube IMS (Agilent 6560 with high-resolution demultiplexing, HRdm) illustrate the unique capabilities of IMS to separate many diagnostic NBS biomarkers from interferences. Furthermore, to address the need for increased speed of NBS analyses, we utilized an automated solid-phase extraction (SPE) system for ∼10 s sampling of simulated NBS samples prior to IMS-MS. This proof-of-concept work demonstrates the unique capabilities of SPE-IMS-MS for high-throughput sample introduction and enhanced separation capacity conducive for increasing speed and accuracy for NBS.

摘要

先天性疾病的检测和诊断是全球新生儿筛查(NBS)计划的主要目标。由于其速度和选择性,质谱(MS)已成为高通量 NBS 采样的首选主要检测方法。然而,由于同重离子/同量异位重叠和嵌合碎片谱,不断增加的 NBS 生物标志物列表为多重 MS 分析带来了独特的分析挑战。由于同重离子和同量异位系统限制了当前方法的诊断能力,并由于许多假阳性结果需要昂贵的后续检查,因此在这里,我们探讨了离子淌度谱(IMS)在提高 MS 分析对一级(第 1 层)筛选的准确性方面的应用。我们的结果表明,需要大约 400 的 IMS 分辨率来自信地评估当前需要后续测试的干血斑(DBS)中大多数感兴趣的 NBS 生物标志物。虽然大多数市售平台都无法达到这种选择性水平,但这里详细介绍的对于商业上可用的漂移管 IMS(Agilent 6560 与高分辨率解复用,HRdm)的分离,说明了 IMS 从干扰中分离许多诊断性 NBS 生物标志物的独特能力。此外,为了满足增加 NBS 分析速度的需求,我们在 IMS-MS 之前使用自动化固相萃取(SPE)系统对模拟 NBS 样品进行了约 10 s 的采样。这项概念验证工作展示了 SPE-IMS-MS 用于高通量样品引入和增强分离能力的独特能力,有助于提高 NBS 的速度和准确性。

相似文献

1
Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry.
Anal Chem. 2021 Dec 28;93(51):17094-17102. doi: 10.1021/acs.analchem.1c04267. Epub 2021 Dec 1.
6
An Untargeted Lipidomics Workflow Incorporating High-Resolution Demultiplexing (HRdm) Drift Tube Ion Mobility-Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2448-2457. doi: 10.1021/jasms.4c00251. Epub 2024 Sep 14.
7
Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory.
J Mass Spectrom Adv Clin Lab. 2021 Dec 13;23:7-13. doi: 10.1016/j.jmsacl.2021.12.005. eCollection 2022 Jan.
8
A High-Throughput Ion Mobility Spectrometry-Mass Spectrometry Screening Method for Opioid Profiling.
J Am Soc Mass Spectrom. 2022 Oct 5;33(10):1904-1913. doi: 10.1021/jasms.2c00186. Epub 2022 Sep 22.
9
Insights and prospects for ion mobility-mass spectrometry in clinical chemistry.
Expert Rev Proteomics. 2022 Jan;19(1):17-31. doi: 10.1080/14789450.2022.2026218. Epub 2022 Jan 17.
10
Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency.
Mol Genet Metab. 2021 Sep-Oct;134(1-2):60-64. doi: 10.1016/j.ymgme.2021.07.012. Epub 2021 Jul 29.

引用本文的文献

1
In-depth characterization of acylcarnitines: utilizing nitroxide radical-directed dissociation in tandem mass spectrometry.
Anal Bioanal Chem. 2025 Jun;417(15):3327-3335. doi: 10.1007/s00216-025-05868-2. Epub 2025 Apr 8.
3
An Untargeted Lipidomics Workflow Incorporating High-Resolution Demultiplexing (HRdm) Drift Tube Ion Mobility-Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2448-2457. doi: 10.1021/jasms.4c00251. Epub 2024 Sep 14.
5
AutonoMS: Automated Ion Mobility Metabolomic Fingerprinting.
J Am Soc Mass Spectrom. 2024 Mar 6;35(3):542-550. doi: 10.1021/jasms.3c00396. Epub 2024 Feb 4.
6
Development of an Automated, High-Throughput Methodology for Native Mass Spectrometry and Collision-Induced Unfolding.
Anal Chem. 2023 Nov 14;95(45):16717-16724. doi: 10.1021/acs.analchem.3c03788. Epub 2023 Nov 4.
8
Current State and Innovations in Newborn Screening: Continuing to Do Good and Avoid Harm.
Int J Neonatal Screen. 2023 Mar 17;9(1):15. doi: 10.3390/ijns9010015.
9
Liquid chromatography-tandem mass spectrometry for clinical diagnostics.
Nat Rev Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022-00175-x. Epub 2022 Dec 8.
10
Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening.
Mass Spectrom Rev. 2024 Jul-Aug;43(4):683-712. doi: 10.1002/mas.21826. Epub 2022 Dec 16.

本文引用的文献

1
A Preprocessing Tool for Enhanced Ion Mobility-Mass Spectrometry-Based Omics Workflows.
J Proteome Res. 2022 Mar 4;21(3):798-807. doi: 10.1021/acs.jproteome.1c00425. Epub 2021 Aug 12.
2
Comparison of Untargeted Metabolomic Profiling vs Traditional Metabolic Screening to Identify Inborn Errors of Metabolism.
JAMA Netw Open. 2021 Jul 1;4(7):e2114155. doi: 10.1001/jamanetworkopen.2021.14155.
3
Studying Autism Using Untargeted Metabolomics in Newborn Screening Samples.
J Mol Neurosci. 2021 Jul;71(7):1378-1393. doi: 10.1007/s12031-020-01787-2. Epub 2021 Jan 30.
5
Ethical and Psychosocial Implications of Genomic Newborn Screening.
Int J Neonatal Screen. 2021 Jan 9;7(1):2. doi: 10.3390/ijns7010002.
6
Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique.
Anal Chem. 2020 Jul 21;92(14):9482-9492. doi: 10.1021/acs.analchem.9b05718. Epub 2020 Jul 6.
8
Prediction of VLCAD deficiency phenotype by a metabolic fingerprint in newborn screening bloodspots.
Biochim Biophys Acta Mol Basis Dis. 2020 Jun 1;1866(6):165725. doi: 10.1016/j.bbadis.2020.165725. Epub 2020 Feb 19.
9
Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS).
Anal Chem. 2020 Mar 17;92(6):4427-4435. doi: 10.1021/acs.analchem.9b05364. Epub 2020 Feb 24.
10
Crowd-Sourced Chemistry: Considerations for Building a Standardized Database to Improve Omic Analyses.
ACS Omega. 2020 Jan 9;5(2):980-985. doi: 10.1021/acsomega.9b03708. eCollection 2020 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验