BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands.
ACS Sens. 2021 Dec 24;6(12):4297-4303. doi: 10.1021/acssensors.1c02097. Epub 2021 Dec 1.
The need for measurements of multiple biomarkers simultaneously at subnanomolar concentrations asks for the development of new sensors with high sensitivity, specificity, precision, and accuracy. Currently, multiplexed sensing in single molecule sensors increases the complexity of the system in terms of reagents and sample read-out. In this letter, we propose a novel approach to multiplex hairpin-based single-DNA molecule sensors, which overcomes the limitations of the present approaches for multiplexing. By target-dependent ssDNA hairpin design, we can create DNA tethers that have distinct tether dynamics upon target binding. Our numerical model shows that by changing the stem length of the ssDNA hairpin, significantly different dynamic tether behavior will be observed. By exploiting the distance-dependent coupling of AuNPs to gold films, we can probe this dynamic behavior along the -axis using a simple laser equipped microscope.
需要同时测量亚纳摩尔浓度的多种生物标志物,这就需要开发具有高灵敏度、特异性、精度和准确性的新型传感器。目前,单分子传感器中的多重传感在试剂和样本读出方面增加了系统的复杂性。在这封信中,我们提出了一种新的基于发夹的单 DNA 分子传感器的多路复用方法,该方法克服了当前多路复用方法的局限性。通过目标依赖性 ssDNA 发夹设计,我们可以创建 DNA 系链,在目标结合时具有不同的系链动力学。我们的数值模型表明,通过改变 ssDNA 发夹的茎长,可以观察到明显不同的动态系链行为。通过利用 AuNPs 与金膜的距离相关耦合,我们可以使用配备简单激光的显微镜沿 -轴探测这种动态行为。