Suppr超能文献

随着碳链长度的增加,全氟羧酸上调氨基酸转运体,并调节 HepaRG 细胞中外源物质转运体的代偿反应。

Perfluorinated Carboxylic Acids with Increasing Carbon Chain Lengths Upregulate Amino Acid Transporters and Modulate Compensatory Response of Xenobiotic Transporters in HepaRG Cells.

机构信息

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington

出版信息

Drug Metab Dispos. 2022 Oct;50(10):1396-1413. doi: 10.1124/dmd.121.000477. Epub 2021 Dec 2.

Abstract

Perfluorinated carboxylic acids (PFCAs) are widespread environmental pollutants for which human exposure has been documented. PFCAs at high doses are known to regulate xenobiotic transporters partly through peroxisome proliferator-activated receptor alpha (PPAR) and constitutive androstane receptor (CAR) in rodent models. Less is known regarding how various PFCAs at a lower concentration modulate transporters for endogenous substrates, such as amino acids in human hepatocytes. Such studies are of particular importance because amino acids are involved in chemical detoxification, and their transport system may serve as a promising therapeutic target for structurally similar xenobiotics. The focus of this study was to further elucidate how PFCAs modulate transporters involved in intermediary metabolism and xenobiotic biotransformation. We tested the hepatic transcriptomic response of HepaRG cells exposed to 45 M of perfluorooctanoic acid, perfluorononanoic acid, or perfluorodecanoic acid in triplicates for 24 hours (vehicle: 0.1% DMSO), as well as the prototypical ligands for PPAR (WY-14643, 45 M) and CAR (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime [CITCO], 2 M). PFCAs with increasing carbon chain lengths (C8-C10) regulated more liver genes, with amino acid metabolism and transport ranked among the top enriched pathways and PFDA ranked as the most potent PFCA tested. Genes encoding amino acid transporters, which are essential for protein synthesis, were novel inducible targets by all three PFCAs, suggesting a potentially protective mechanism to reduce further toxic insults. None of the transporter regulations appeared to be through PPAR or CAR but potential involvement of nuclear factor erythroid 2-related factor 2 is noted for all 3 PFCAs. In conclusion, PFCAs with increasing carbon chain lengths up-regulate amino acid transporters and modulate xenobiotic transporters to limit further toxic exposures in HepaRG cells. SIGNIFICANCE STATEMENT: Little is known regarding how various perfluorinated carboxylic acids modulate the transporters for endogenous substrates in human liver cells. Using HepaRG cells, this study is among the first to show that perfluorinated carboxylic acids with increasing carbon chain lengths upregulate amino acid transporters, which are essential for protein synthesis, and modulate xenobiotic transporters to limit further toxic exposures at concentrations lower than what was used in the literature.

摘要

全氟羧酸(PFCAs)是广泛存在的环境污染物,已有人类暴露于此的相关记录。在啮齿动物模型中,高剂量的 PFCAs 已知可通过过氧化物酶体增殖物激活受体α(PPAR)和组成型雄烷受体(CAR)调节外源性转运蛋白。然而,人们对于较低浓度的各种 PFCAs 如何调节内源性底物(如人肝细胞中的氨基酸)的转运蛋白知之甚少。此类研究尤为重要,因为氨基酸参与化学解毒,其转运系统可能成为结构相似的外源性毒物的有前途的治疗靶点。本研究的重点是进一步阐明 PFCAs 如何调节参与中间代谢和外源性生物转化的转运蛋白。我们测试了 HepaRG 细胞在 24 小时内暴露于 45μM 全氟辛酸、全氟壬酸或全氟癸酸(载体:0.1%DMSO)以及 PPAR (WY-14643,45μM)和 CAR(6-(4-氯苯基)咪唑并[2,1-b][1,3]噻唑-5-甲酰氯 O-(3,4-二氯苄基)肟[CITCO],2μM)的原型配体时的肝转录组反应。具有较长碳链长度(C8-C10)的 PFCAs 调节了更多的肝脏基因,其中氨基酸代谢和转运被列为最富集的途径,而 PFDA 被评为测试过的最有效的 PFCAs。编码氨基酸转运蛋白的基因是蛋白质合成所必需的,所有三种 PFCAs 均为新型诱导靶标,这表明存在一种潜在的保护机制,可以减少进一步的毒性损伤。所有转运蛋白的调节似乎都不是通过 PPAR 或 CAR,但对于所有三种 PFCAs,都注意到核因子红细胞 2 相关因子 2 的潜在参与。总之,随着碳链长度的增加,PFCAs 上调了氨基酸转运蛋白,并调节了外源性转运蛋白,以限制 HepaRG 细胞中进一步的毒性暴露。意义声明:对于各种全氟羧酸如何调节人肝细胞中内源性底物的转运蛋白,人们知之甚少。本研究使用 HepaRG 细胞,首次表明随着碳链长度的增加,全氟羧酸上调了氨基酸转运蛋白,这些转运蛋白对蛋白质合成至关重要,并调节了外源性转运蛋白,以限制在文献中使用的浓度以下进一步的毒性暴露。

相似文献

2
Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid.
Arch Toxicol. 2017 Jun;91(6):2365-2374. doi: 10.1007/s00204-016-1888-3. Epub 2016 Nov 10.
5
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.
Biochim Biophys Acta. 2016 Sep;1859(9):1218-1227. doi: 10.1016/j.bbagrm.2016.03.007. Epub 2016 Mar 17.
7
Levels and profiles of long-chain perfluorinated carboxylic acids in human breast milk and infant formulas in East Asia.
Chemosphere. 2012 Jan;86(3):315-21. doi: 10.1016/j.chemosphere.2011.10.035. Epub 2011 Nov 21.
8
10
Role of hepatic fatty acid:coenzyme A ligases in the metabolism of xenobiotic carboxylic acids.
Clin Exp Pharmacol Physiol. 1998 Oct;25(10):776-82. doi: 10.1111/j.1440-1681.1998.tb02152.x.

本文引用的文献

1
Perfluoroalkyl Carboxylic Acids Interact with the Human Bile Acid Transporter NTCP.
Livers. 2021 Dec;1(4):221-229. doi: 10.3390/livers1040017. Epub 2021 Oct 18.
3
The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities.
Adv Pharmacol. 2021;91:61-110. doi: 10.1016/bs.apha.2020.10.003. Epub 2021 Apr 8.
5
Receptor-Bound Perfluoroalkyl Carboxylic Acids Dictate Their Activity on Human and Mouse Peroxisome Proliferator-Activated Receptor γ.
Environ Sci Technol. 2020 Aug 4;54(15):9529-9536. doi: 10.1021/acs.est.0c02386. Epub 2020 Jul 17.
8
Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nat Biotechnol. 2019 Aug;37(8):907-915. doi: 10.1038/s41587-019-0201-4. Epub 2019 Aug 2.
9
Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives.
J Cancer Prev. 2019 Jun;24(2):72-78. doi: 10.15430/JCP.2019.24.2.72. Epub 2019 Jun 30.
10
Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey.
Environ Pollut. 2019 Sep;252(Pt B):1335-1343. doi: 10.1016/j.envpol.2019.06.035. Epub 2019 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验