Department of Biochemistry, Semmelweis University, Budapest, Hungary.
HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary.
Elife. 2021 Dec 6;10:e74693. doi: 10.7554/eLife.74693.
The phosphorylation-activated anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is gated by an ATP hydrolysis cycle at its two cytosolic nucleotide-binding domains, and is essential for epithelial salt-water transport. A large number of CFTR mutations cause cystic fibrosis. Since recent breakthrough in targeted pharmacotherapy, CFTR mutants with impaired gating are candidates for stimulation by potentiator drugs. Thus, understanding the molecular pathology of individual mutations has become important. The relatively common R117H mutation affects an extracellular loop, but nevertheless causes a strong gating defect. Here, we identify a hydrogen bond between the side chain of arginine 117 and the backbone carbonyl group of glutamate 1124 in the cryo-electronmicroscopic structure of phosphorylated, ATP-bound CFTR. We address the functional relevance of that interaction for CFTR gating using macroscopic and microscopic inside-out patch-clamp recordings. Employing thermodynamic double-mutant cycles, we systematically track gating-state-dependent changes in the strength of the R117-E1124 interaction. We find that the H-bond is formed only in the open state, but neither in the short-lived 'flickery' nor in the long-lived 'interburst' closed state. Loss of this H-bond explains the strong gating phenotype of the R117H mutant, including robustly shortened burst durations and strongly reduced intraburst open probability. The findings may help targeted potentiator design.
磷酸化激活的阴离子通道囊性纤维化跨膜电导调节因子(CFTR)在其两个胞质核苷酸结合域的 ATP 水解循环中被门控,对于上皮盐-水转运至关重要。大量 CFTR 突变导致囊性纤维化。由于最近靶向药物治疗的突破,具有门控缺陷的 CFTR 突变体成为刺激剂药物的候选药物。因此,理解单个突变的分子病理学变得很重要。相对常见的 R117H 突变影响细胞外环,但仍然导致严重的门控缺陷。在这里,我们在磷酸化、ATP 结合的 CFTR 的冷冻电子显微镜结构中发现了精氨酸 117 的侧链和谷氨酸 1124 的骨架羰基之间的氢键。我们使用宏观和微观的内外向外型膜片钳记录来解决该相互作用对 CFTR 门控的功能相关性。利用热力学双突变体循环,我们系统地跟踪门控状态依赖性的 R117-E1124 相互作用强度变化。我们发现氢键仅在开放状态下形成,而不在短暂的“闪烁”或长寿命的“爆发间”关闭状态下形成。失去这种氢键解释了 R117H 突变体的强烈门控表型,包括爆发持续时间明显缩短和爆发间开放概率显著降低。这些发现可能有助于有针对性的增敏剂设计。