Suppr超能文献

通过向脱细胞大鼠气管内滴注细胞负载水凝胶实现外源性细胞的均匀分布。

Homogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Cell-Loaded Hydrogel.

机构信息

Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07302, United States.

Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States.

出版信息

ACS Biomater Sci Eng. 2022 Jan 10;8(1):82-88. doi: 10.1021/acsbiomaterials.1c01031. Epub 2021 Dec 7.

Abstract

Injured or diseased airway epithelium due to repeated environmental insults or genetic mutations can lead to a functional decline of the lung and incurable lung diseases. Bioengineered airway tissue constructs can facilitate investigation of human lung diseases and accelerate the development of effective therapeutics. Here, we report robust tissue manipulation modalities that allow: (i) selective removal of the endogenous epithelium of cultured airway tissues and (ii) spatially uniform distribution and prolonged cultivation of exogenous cells that are implanted topically onto the denuded airway lumen. Results obtained highlight that our approach to airway tissue manipulation can facilitate controlled removal of the airway epithelium and subsequent homogeneous distribution of newly implanted cells. This study can contribute to the creation of innovative tissue engineering methodologies that can facilitate the treatment of lung diseases, such as cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary disease.

摘要

由于反复的环境损伤或基因突变,受损或患病的气道上皮细胞可导致肺部功能下降和不可治愈的肺部疾病。生物工程气道组织构建体可以促进人类肺部疾病的研究,并加速有效治疗方法的开发。在这里,我们报告了强大的组织操作方式,允许:(i)选择性去除培养气道组织的内源性上皮细胞,以及(ii)将外源性细胞均匀分布并延长培养,将其局部植入裸露的气道腔。结果表明,我们的气道组织操作方法可以促进气道上皮细胞的受控去除,以及随后新植入细胞的均匀分布。这项研究可以为创新的组织工程方法的创建做出贡献,这些方法可以促进囊性纤维化、原发性纤毛运动障碍和慢性阻塞性肺疾病等肺部疾病的治疗。

相似文献

1
Homogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Cell-Loaded Hydrogel.
ACS Biomater Sci Eng. 2022 Jan 10;8(1):82-88. doi: 10.1021/acsbiomaterials.1c01031. Epub 2021 Dec 7.
2
Imaging-guided bioreactor for de-epithelialization and long-term cultivation of rat trachea.
Lab Chip. 2022 Mar 1;22(5):1018-1031. doi: 10.1039/d1lc01105g.
3
Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue.
J Vis Exp. 2022 Apr 6(182). doi: 10.3791/63544.
4
Human Bronchial Epithelial Cell Growth on Homologous Versus Heterologous Tissue Extracellular Matrix.
J Surg Res. 2021 Jul;263:215-223. doi: 10.1016/j.jss.2021.01.040. Epub 2021 Mar 7.
6
Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas.
J Heart Lung Transplant. 2005 Jul;24(7):882-90. doi: 10.1016/j.healun.2004.04.020.
7
The role of respiratory epithelium in a rat model of obliterative airway disease.
Transplantation. 2000 Feb 27;69(4):661-4. doi: 10.1097/00007890-200002270-00031.
8
Embryonic stem cells generate airway epithelial tissue.
Am J Respir Cell Mol Biol. 2005 Feb;32(2):87-92. doi: 10.1165/rcmb.2004-0079RC. Epub 2004 Dec 2.
10
Matrilysin expression and function in airway epithelium.
J Clin Invest. 1998 Oct 1;102(7):1321-31. doi: 10.1172/JCI1516.

引用本文的文献

1
Bioengineered tracheal graft with enhanced vascularization and mechanical stability for functional airway reconstruction.
Regen Ther. 2025 Apr 9;29:364-380. doi: 10.1016/j.reth.2025.03.016. eCollection 2025 Jun.
2
Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions.
Signal Transduct Target Ther. 2024 Jul 1;9(1):166. doi: 10.1038/s41392-024-01852-x.
3
Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways.
Adv Exp Med Biol. 2023;1413:107-120. doi: 10.1007/978-3-031-26625-6_6.
4
Opto-electromechanical quantification of epithelial barrier function in injured and healthy airway tissues.
APL Bioeng. 2023 Jan 11;7(1):016104. doi: 10.1063/5.0123127. eCollection 2023 Mar.
5
Imaging-guided bioreactor for de-epithelialization and long-term cultivation of rat trachea.
Lab Chip. 2022 Mar 1;22(5):1018-1031. doi: 10.1039/d1lc01105g.

本文引用的文献

1
Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip.
J Cyst Fibros. 2022 Jul;21(4):606-615. doi: 10.1016/j.jcf.2021.10.004. Epub 2021 Nov 17.
2
Breathing in vitro: Designs and applications of engineered lung models.
J Tissue Eng. 2021 Apr 28;12:20417314211008696. doi: 10.1177/20417314211008696. eCollection 2021 Jan-Dec.
3
Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells.
Cell Stem Cell. 2021 Jan 7;28(1):79-95.e8. doi: 10.1016/j.stem.2020.09.017. Epub 2020 Oct 23.
4
Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs.
Nat Med. 2020 Jul;26(7):1102-1113. doi: 10.1038/s41591-020-0971-8. Epub 2020 Jul 13.
5
Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture.
Tissue Eng Part A. 2020 Apr;26(7-8):432-440. doi: 10.1089/ten.TEA.2019.0188. Epub 2019 Dec 27.
6
Cell replacement in human lung bioengineering.
J Heart Lung Transplant. 2019 Feb;38(2):215-224. doi: 10.1016/j.healun.2018.11.007. Epub 2018 Nov 22.
8
Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease.
Eur Respir J. 2018 Nov 29;52(5). doi: 10.1183/13993003.00876-2018. Print 2018 Nov.
9
Induced Pluripotent Stem Cells for Primary Ciliary Dyskinesia Modeling and Personalized Medicine.
Am J Respir Cell Mol Biol. 2018 Dec;59(6):672-683. doi: 10.1165/rcmb.2018-0213TR.
10
Advances in the Genetics of Primary Ciliary Dyskinesia: Clinical Implications.
Chest. 2018 Sep;154(3):645-652. doi: 10.1016/j.chest.2018.05.007. Epub 2018 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验