Department of Statistics, University of Oxford, Oxford, UK.
Department of Political Science, Stanford University, Stanford, CA, USA.
Nature. 2021 Dec;600(7890):695-700. doi: 10.1038/s41586-021-04198-4. Epub 2021 Dec 8.
Surveys are a crucial tool for understanding public opinion and behaviour, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the effect of survey bias: an instance of the Big Data Paradox. Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys: Delphi-Facebook (about 250,000 responses per week) and Census Household Pulse (about 75,000 every two weeks). In May 2021, Delphi-Facebook overestimated uptake by 17 percentage points (14-20 percentage points with 5% benchmark imprecision) and Census Household Pulse by 14 (11-17 percentage points with 5% benchmark imprecision), compared to a retroactively updated benchmark the Centers for Disease Control and Prevention published on 26 May 2021. Moreover, their large sample sizes led to miniscule margins of error on the incorrect estimates. By contrast, an Axios-Ipsos online panel with about 1,000 responses per week following survey research best practices provided reliable estimates and uncertainty quantification. We decompose observed error using a recent analytic framework to explain the inaccuracy in the three surveys. We then analyse the implications for vaccine hesitancy and willingness. We show how a survey of 250,000 respondents can produce an estimate of the population mean that is no more accurate than an estimate from a simple random sample of size 10. Our central message is that data quality matters more than data quantity, and that compensating the former with the latter is a mathematically provable losing proposition.
调查是了解公众意见和行为的重要工具,其准确性取决于通过最大限度地减少来自所有来源的偏差来保持目标人群的统计代表性。增加数据量会缩小置信区间,但会放大调查偏差的影响:这就是大数据悖论的一个例子。在这里,我们从两个大型调查中展示了 2021 年 1 月 9 日至 5 月 19 日期间美国成年人首次接种 COVID-19 疫苗的估计中出现的这种悖论:德尔福-脸书(每周约有 25 万次回复)和人口普查家庭脉搏(每两周约有 7.5 万次回复)。2021 年 5 月,与疾病控制与预防中心 2021 年 5 月 26 日公布的回溯更新基准相比,德尔福-脸书高估了接种率 17 个百分点(置信度为 5%时,范围为 14-20 个百分点),人口普查家庭脉搏高估了 14 个百分点(置信度为 5%时,范围为 11-17 个百分点)。此外,它们的大样本量导致错误估计的误差非常小。相比之下,遵循调查研究最佳实践的 Axios-Ipsos 在线小组每周约有 1000 次回复,提供了可靠的估计和不确定性量化。我们使用最近的分析框架来分解观察到的错误,以解释三个调查中的不准确性。然后,我们分析了对疫苗犹豫和意愿的影响。我们展示了如何对 25 万受访者进行调查,产生的人口平均值估计与简单随机样本的估计一样不准确,而简单随机样本的规模为 10。我们的核心信息是数据质量比数据量更重要,用后者来弥补前者是一个在数学上可以证明的失败命题。