Suppr超能文献

具有3D药效团约束的深度生成设计。

Deep generative design with 3D pharmacophoric constraints.

作者信息

Imrie Fergus, Hadfield Thomas E, Bradley Anthony R, Deane Charlotte M

机构信息

Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK

Exscientia Ltd The Schrödinger Building, Oxford Science Park Oxford OX4 4GE UK.

出版信息

Chem Sci. 2021 Oct 25;12(43):14577-14589. doi: 10.1039/d1sc02436a. eCollection 2021 Nov 10.

Abstract

Generative models have increasingly been proposed as a solution to the molecular design problem. However, it has proved challenging to control the design process or incorporate prior knowledge, limiting their practical use in drug discovery. In particular, generative methods have made limited use of three-dimensional (3D) structural information even though this is critical to binding. This work describes a method to incorporate such information and demonstrates the benefit of doing so. We combine an existing graph-based deep generative model, DeLinker, with a convolutional neural network to utilise physically-meaningful 3D representations of molecules and target pharmacophores. We apply our model, DEVELOP, to both linker and R-group design, demonstrating its suitability for both hit-to-lead and lead optimisation. The 3D pharmacophoric information results in improved generation and allows greater control of the design process. In multiple large-scale evaluations, we show that including 3D pharmacophoric constraints results in substantial improvements in the quality of generated molecules. On a challenging test set derived from PDBbind, our model improves the proportion of generated molecules with high 3D similarity to the original molecule by over 300%. In addition, DEVELOP recovers 10× more of the original molecules compared to the baseline DeLinker method. Our approach is general-purpose, readily modifiable to alternate 3D representations, and can be incorporated into other generative frameworks. Code is available at https://github.com/oxpig/DEVELOP.

摘要

生成模型越来越多地被提出作为解决分子设计问题的一种方法。然而,事实证明,控制设计过程或纳入先验知识具有挑战性,这限制了它们在药物发现中的实际应用。特别是,生成方法对三维(3D)结构信息的利用有限,尽管这对结合至关重要。这项工作描述了一种纳入此类信息的方法,并展示了这样做的好处。我们将现有的基于图的深度生成模型DeLinker与卷积神经网络相结合,以利用分子和目标药效团的具有物理意义的3D表示。我们将我们的模型DEVELOP应用于连接子和R基团设计,证明了它适用于从苗头化合物到先导化合物的优化以及先导化合物的优化。3D药效团信息带来了更好的生成效果,并允许对设计过程进行更大程度的控制。在多个大规模评估中,我们表明纳入3D药效团约束会使生成分子的质量有显著提高。在一个从PDBbind衍生而来的具有挑战性的测试集上,我们的模型将与原始分子具有高3D相似性的生成分子的比例提高了300%以上。此外,与基线DeLinker方法相比,DEVELOP能够找回多10倍的原始分子。我们的方法具有通用性,易于修改以采用其他3D表示,并且可以纳入其他生成框架。代码可在https://github.com/oxpig/DEVELOP获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验