Suppr超能文献

氧代谢应激与脑小血管病患者的脑白质损伤。

Oxygen Metabolic Stress and White Matter Injury in Patients With Cerebral Small Vessel Disease.

机构信息

Department of Neurology (P.K., Y.C., A.L.F., H.A., J.-M.L.), Washington University School of Medicine.

Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.).

出版信息

Stroke. 2022 May;53(5):1570-1579. doi: 10.1161/STROKEAHA.121.035674. Epub 2021 Dec 10.

Abstract

BACKGROUND

Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth.

METHODS

In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions.

RESULTS

In a cohort of 42 participants (age 50-80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions.

CONCLUSIONS

Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.

摘要

背景

慢性缺氧缺血是脑小血管病(CSVD)中脑白质高信号(WMH)和微观结构破坏发展的一个假定机制。WMH 主要位于深部脑白质(WM)流域区域。我们假设,缺氧缺血的标志——氧提取分数(OEF)升高,将在 WMH 密度最高的流域中被检测到。我们进一步假设,OEF 将在 WMH 生长前沿的周围区域升高。

方法

这项横断面研究于 2016 年至 2019 年在密苏里州圣路易斯的一所学术医学中心进行,参与者(年龄>50 岁)存在多种脑血管危险因素,他们接受了脑部磁共振成像,使用伪连续动脉自旋标记、不对称自旋回波、液体衰减反转恢复和扩散张量成像来分别测量脑血流(CBF)、OEF、WMH 和 WM 完整性。我们将生理流域定义为 CBF 低于年轻健康队列中平均 WM CBF 的第 10 百分位数的区域。我们进行线性回归,以评估 CBF 和 OEF 与液体衰减反转恢复 WMH 和扩散张量成像分别定义的结构性和微观结构 WM 损伤之间的关系。我们进行方差分析,以确定 OEF 是否在靠近 WMH 病变的区域增加。

结果

在一个由 42 名参与者(年龄 50-80 岁)组成的队列中,生理流域区域与 WMH 病变密度最高的区域空间上重叠。随着 CBF 降低和 OEF 升高,WMH 密度增加。在调整血管危险因素后,升高的流域 OEF 与更大的 WMH 负担和微观结构破坏相关。相比之下,WM 和流域 CBF 与 WMH 负担或微观结构破坏无关。此外,在接近 WMH 病变的同心轮廓中,OEF 逐渐升高,而 CBF 降低。

结论

流域区域的慢性缺氧缺血可能导致 CSVD 的发病机制和 WMH 的发展。流域 OEF 可能成为识别 CSVD 进展风险个体的有希望的影像学生物标志物。

相似文献

1
Oxygen Metabolic Stress and White Matter Injury in Patients With Cerebral Small Vessel Disease.
Stroke. 2022 May;53(5):1570-1579. doi: 10.1161/STROKEAHA.121.035674. Epub 2021 Dec 10.
2
White matter integrity in small vessel disease is related to cognition.
Neuroimage Clin. 2015 Feb 16;7:518-24. doi: 10.1016/j.nicl.2015.02.003. eCollection 2015.
3
Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease.
Cereb Circ Cogn Behav. 2023 Feb 10;4:100162. doi: 10.1016/j.cccb.2023.100162. eCollection 2023.
4
Progression of White Matter Hyperintensities Preceded by Heterogeneous Decline of Microstructural Integrity.
Stroke. 2018 Jun;49(6):1386-1393. doi: 10.1161/STROKEAHA.118.020980. Epub 2018 May 3.
5
Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures.
Neuroimage Clin. 2015 Apr 22;8:224-9. doi: 10.1016/j.nicl.2015.04.012. eCollection 2015.
6
Cerebral Oxygen Metabolic Stress, Microstructural Injury, and Infarction in Adults With Sickle Cell Disease.
Neurology. 2021 Aug 31;97(9):e902-e912. doi: 10.1212/WNL.0000000000012404. Epub 2021 Jun 25.
8
Characterizing a perfusion-based periventricular small vessel region of interest.
Neuroimage Clin. 2019;23:101897. doi: 10.1016/j.nicl.2019.101897. Epub 2019 Jun 12.
9
Mismatch of MRI White Matter Hyperintensities and Gait Function in Patients With Cerebral Small Vessel Disease.
J Magn Reson Imaging. 2024 Aug;60(2):550-558. doi: 10.1002/jmri.29121. Epub 2023 Nov 3.
10
Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time.
Neurology. 2018 Jun 12;90(24):e2119-e2126. doi: 10.1212/WNL.0000000000005684. Epub 2018 May 16.

引用本文的文献

1
Cognitive Reserve Disrupts Cognitive Decline from White Matter Hyperintensities.
medRxiv. 2025 Aug 19:2025.08.15.25331829. doi: 10.1101/2025.08.15.25331829.
2
Small vessel dysfunction at 7T MRI locally predicts white matter damage progression in CADASIL.
J Cereb Blood Flow Metab. 2025 Aug 20:271678X251369257. doi: 10.1177/0271678X251369257.
3
MRI signatures associated with active ischemia and disease severity in cerebral small vessel disease.
Neuroimage Rep. 2025 Aug 4;5(3):100281. doi: 10.1016/j.ynirp.2025.100281. eCollection 2025 Sep.
7
Pulse Pressure Impairs Cognition via White Matter Disruption.
Hypertension. 2025 Sep;82(9):1480-1491. doi: 10.1161/HYPERTENSIONAHA.124.24543. Epub 2025 Jul 10.
8
Hyperglycemia selectively increases cerebral non-oxidative glucose consumption without affecting blood flow.
J Cereb Blood Flow Metab. 2025 Jul 1:271678X251329714. doi: 10.1177/0271678X251329714.
9
10
Regional Hypoperfusion Predicts White Matter Tract Degeneration in Recent Single Subcortical Infarcts.
J Am Heart Assoc. 2025 May 20;14(10):e040529. doi: 10.1161/JAHA.124.040529. Epub 2025 May 15.

本文引用的文献

1
Characterizing a perfusion-based periventricular small vessel region of interest.
Neuroimage Clin. 2019;23:101897. doi: 10.1016/j.nicl.2019.101897. Epub 2019 Jun 12.
2
William M. Feinberg Award for Excellence in Clinical Stroke: Small Vessel Disease; a Big Problem, But Fixable.
Stroke. 2018 Jul;49(7):1770-1775. doi: 10.1161/STROKEAHA.118.021184. Epub 2018 Jun 12.
3
Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time.
Neurology. 2018 Jun 12;90(24):e2119-e2126. doi: 10.1212/WNL.0000000000005684. Epub 2018 May 16.
4
Progression of White Matter Hyperintensities Preceded by Heterogeneous Decline of Microstructural Integrity.
Stroke. 2018 Jun;49(6):1386-1393. doi: 10.1161/STROKEAHA.118.020980. Epub 2018 May 3.
5
Diagnosis of Cerebral Amyloid Angiopathy: Evolution of the Boston Criteria.
Stroke. 2018 Feb;49(2):491-497. doi: 10.1161/STROKEAHA.117.016990. Epub 2018 Jan 15.
6
Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia.
Blood. 2018 Mar 1;131(9):1012-1021. doi: 10.1182/blood-2017-06-789842. Epub 2017 Dec 18.
7
Quantitative and qualitative MRI evaluation of cerebral small vessel disease in an elderly population: a longitudinal study.
Acta Radiol. 2018 May;59(5):612-618. doi: 10.1177/0284185117727567. Epub 2017 Aug 16.
9
Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.
J Cereb Blood Flow Metab. 2016 Oct;36(10):1653-1667. doi: 10.1177/0271678X16662891. Epub 2016 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验