Suppr超能文献

量化细菌泛基因组在环境胁迫下的适应性作用。

Toward quantifying the adaptive role of bacterial pangenomes during environmental perturbations.

机构信息

Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.

出版信息

ISME J. 2022 May;16(5):1222-1234. doi: 10.1038/s41396-021-01149-9. Epub 2021 Dec 9.

Abstract

Metagenomic surveys have revealed that natural microbial communities are predominantly composed of sequence-discrete, species-like populations but the genetic and/or ecological processes that maintain such populations remain speculative, limiting our understanding of population speciation and adaptation to perturbations. To address this knowledge gap, we sequenced 112 Salinibacter ruber isolates and 12 companion metagenomes from four adjacent saltern ponds in Mallorca, Spain that were experimentally manipulated to dramatically alter salinity and light intensity, the two major drivers of this ecosystem. Our analyses showed that the pangenome of the local Sal. ruber population is open and similar in size (~15,000 genes) to that of randomly sampled Escherichia coli genomes. While most of the accessory (noncore) genes were isolate-specific and showed low in situ abundances based on the metagenomes compared to the core genes, indicating that they were functionally unimportant and/or transient, 3.5% of them became abundant when salinity (but not light) conditions changed and encoded for functions related to osmoregulation. Nonetheless, the ecological advantage of these genes, while significant, was apparently not strong enough to purge diversity within the population. Collectively, our results provide an explanation for how this immense intrapopulation gene diversity is maintained, which has implications for the prokaryotic species concept.

摘要

宏基因组调查显示,自然微生物群落主要由序列离散的、类似物种的种群组成,但维持这些种群的遗传和/或生态过程仍在推测之中,这限制了我们对种群形成和对扰动适应的理解。为了填补这一知识空白,我们对来自西班牙马略卡岛四个相邻盐田的 112 个盐红菌(Salinibacter ruber)分离株和 12 个伴随的宏基因组进行了测序,这些盐田被实验性地操纵以显著改变盐度和光照强度,这是该生态系统的两个主要驱动因素。我们的分析表明,当地盐红菌种群的泛基因组是开放的,大小与随机采样的大肠杆菌基因组相似(约 15000 个基因)。虽然大多数附加(非核心)基因是分离株特异性的,并且与核心基因相比,根据宏基因组在原位的丰度较低,表明它们在功能上不重要和/或短暂,但其中 3.5%在盐度(而非光照)条件发生变化时变得丰富,并编码与渗透压调节相关的功能。尽管如此,这些基因的生态优势虽然显著,但显然不足以清除种群内的多样性。总的来说,我们的研究结果为维持这种巨大的种群内基因多样性提供了一种解释,这对原核生物的物种概念具有重要意义。

相似文献

1
Toward quantifying the adaptive role of bacterial pangenomes during environmental perturbations.
ISME J. 2022 May;16(5):1222-1234. doi: 10.1038/s41396-021-01149-9. Epub 2021 Dec 9.
2
Towards estimating the number of strains that make up a natural bacterial population.
Nat Commun. 2024 Jan 16;15(1):544. doi: 10.1038/s41467-023-44622-z.
4
Genome-Centric Dynamics Shape the Diversity of Oral Bacterial Populations.
mBio. 2022 Dec 20;13(6):e0241422. doi: 10.1128/mbio.02414-22. Epub 2022 Oct 10.
6
Genomes of "Spiribacter", a streamlined, successful halophilic bacterium.
BMC Genomics. 2013 Nov 13;14:787. doi: 10.1186/1471-2164-14-787.
7
Exploring environmental intra-species diversity through non-redundant pangenome assemblies.
Mol Ecol Resour. 2023 Oct;23(7):1724-1736. doi: 10.1111/1755-0998.13826. Epub 2023 Jun 29.
8
Evaluating Assembly and Binning Strategies for Time Series Drinking Water Metagenomes.
Microbiol Spectr. 2021 Dec 22;9(3):e0143421. doi: 10.1128/Spectrum.01434-21. Epub 2021 Nov 3.
9
Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics.
FEMS Microbiol Ecol. 2014 Jun;88(3):623-35. doi: 10.1111/1574-6941.12329. Epub 2014 Apr 28.
10
A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments.
Microbiome. 2018 Sep 19;6(1):168. doi: 10.1186/s40168-018-0548-7.

引用本文的文献

2
3
Comparative metagenomics indicates metabolic niche differentiation of benthic and planktonic Woeseiaceae.
Environ Microbiome. 2025 Jun 17;20(1):74. doi: 10.1186/s40793-025-00732-3.
5
Pangenomes suggest ecological-evolutionary responses to experimental soil warming.
mSphere. 2025 Apr 29;10(4):e0005925. doi: 10.1128/msphere.00059-25. Epub 2025 Mar 19.

本文引用的文献

1
Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences.
Environ Microbiol. 2020 Aug;22(8):3394-3412. doi: 10.1111/1462-2920.15112. Epub 2020 Jul 29.
2
Accurate and complete genomes from metagenomes.
Genome Res. 2020 Mar;30(3):315-333. doi: 10.1101/gr.258640.119. Epub 2020 Mar 18.
3
Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity.
ISME J. 2020 May;14(5):1247-1259. doi: 10.1038/s41396-020-0600-z. Epub 2020 Feb 11.
4
KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold.
Bioinformatics. 2020 Apr 1;36(7):2251-2252. doi: 10.1093/bioinformatics/btz859.
5
Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota.
ISME J. 2019 Dec;13(12):3024-3036. doi: 10.1038/s41396-019-0491-z. Epub 2019 Aug 26.
6
Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities.
Environ Microbiol. 2019 Nov;21(11):4300-4315. doi: 10.1111/1462-2920.14790. Epub 2019 Oct 18.
7
A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations.
Cell. 2019 Aug 8;178(4):820-834.e14. doi: 10.1016/j.cell.2019.06.033.
8
High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
Nat Commun. 2018 Nov 30;9(1):5114. doi: 10.1038/s41467-018-07641-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验