Suppr超能文献

受生物启发的二维各向同性抗疲劳水凝胶

Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.

作者信息

Liang Xiangyu, Chen Guangda, Lin Shaoting, Zhang Jiajun, Wang Liu, Zhang Pei, Lan Yang, Liu Ji

机构信息

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2022 Feb;34(8):e2107106. doi: 10.1002/adma.202107106. Epub 2022 Jan 17.

Abstract

Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as ≈100-300 J m , making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches.

摘要

设计具有肌肉样各向异性结构的传统水凝胶,可以有效地将沿排列方向的疲劳阈值提高到1000焦耳每平方米以上;然而,垂直于排列方向的疲劳阈值仍然低至约100 - 300焦耳每平方米,这使得它们不适用于需要各向同性性能的场景。在此,受心脏瓣膜独特的结构-性能关系启发,报道了一种简单而通用的策略,用于设计具有前所未有的各向同性抗疲劳性能的传统水凝胶,其在两个任意平面内方向上的疲劳阈值均超过1500焦耳每平方米,创历史新高。这个两步过程包括通过双向冷冻铸造工艺形成优先排列的层状微/纳米结构,然后进行压缩退火,协同作用极大地增强了对疲劳裂纹扩展的抗性。该研究提供了一种制造具有各向同性极端性能的软材料的可行方法,从而为将这些先进软材料应用于软机器人、柔性电子、电子皮肤和组织贴片等应用开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验