Suppr超能文献

具有可变形卷积的自动12导联心电图分类网络

Automatic 12-Leading Electrocardiogram Classification Network with Deformable Convolution.

作者信息

Xie Yuntao, Qin Lang, Tan Hongcheng, Li Xinyang, Liu Bisen, Wang Huang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:882-885. doi: 10.1109/EMBC46164.2021.9630227.

Abstract

Electrocardiogram (ECG) is an electrical signal that helps monitor the physiology of the heart. A complete ECG record includes 12 leads, each reflecting features from a different angle of the heart. In recent years, various deep learning algorithms, especially convolutional neural networks (CNN), have been applied to detect ECG features. However, the conventional CNN can only extract the local features and cannot extract the data correlation across the leads of ECG. Based on deformable convolution networks (DCN), this article proposes a new neural network structure (DCNet) to detect ECG features. The network architecture consists of four DCN blocks and a classification layer. For the ECG classification task, in a DCN block, the combination of normal convolution and deformable convolution with better effect was testified by the experiments. Based on the feature learning capability of DCN, the architecture can better extract the characteristics between leads. Using the public 12-leading ECG data in CPSC-2018, the diagnostic accuracy of this architecture is the highest, reaching 86.3%, which is superior to other common network architectures with good results in ECG signal classification.Clinical relevance-In this paper, we proposed an effective automatic ECG classification model that can reduce medical staff workload.

摘要

心电图(ECG)是一种有助于监测心脏生理状况的电信号。一份完整的心电图记录包括12导联,每个导联从心脏的不同角度反映其特征。近年来,各种深度学习算法,尤其是卷积神经网络(CNN),已被应用于检测心电图特征。然而,传统的CNN只能提取局部特征,无法提取心电图各导联之间的数据相关性。基于可变形卷积网络(DCN),本文提出了一种用于检测心电图特征的新型神经网络结构(DCNet)。该网络架构由四个DCN模块和一个分类层组成。对于心电图分类任务,在一个DCN模块中,通过实验验证了普通卷积和可变形卷积相结合具有更好的效果。基于DCN的特征学习能力,该架构能够更好地提取各导联之间的特征。使用CPSC - 2018中的公开12导联心电图数据,该架构的诊断准确率最高,达到86.3%,优于其他在心电图信号分类中取得良好效果的常见网络架构。临床相关性——在本文中,我们提出了一种有效的自动心电图分类模型,可减轻医务人员的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验