Suppr超能文献

贝叶斯正则化在非平稳高斯线性混合效应模型中的应用。

Bayesian regularization for a nonstationary Gaussian linear mixed effects model.

机构信息

Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, USA.

出版信息

Stat Med. 2022 Feb 20;41(4):681-697. doi: 10.1002/sim.9279. Epub 2021 Dec 12.

Abstract

In omics experiments, estimation and variable selection can involve thousands of proteins/genes observed from a relatively small number of subjects. Many regression regularization procedures have been developed for estimation and variable selection in such high-dimensional problems. However, approaches have predominantly focused on linear regression models that ignore correlation arising from long sequences of repeated measurements on the outcome. Our work is motivated by the need to identify proteomic biomarkers that improve the prediction of rapid lung-function decline for individuals with cystic fibrosis (CF) lung disease. We extend four Bayesian penalized regression approaches for a Gaussian linear mixed effects model with nonstationary covariance structure to account for the complicated structure of longitudinal lung function data while simultaneously estimating unknown parameters and selecting important protein isoforms to improve predictive performance. Different types of shrinkage priors are evaluated to induce variable selection in a fully Bayesian framework. The approaches are studied with simulations. We apply the proposed method to real proteomics and lung-function outcome data from our motivating CF study, identifying a set of relevant clinical/demographic predictors and a proteomic biomarker for rapid decline of lung function. We also illustrate the methods on CD4 yeast cell-cycle genomic data, confirming that the proposed method identifies transcription factors that have been highlighted in the literature for their importance as cell cycle transcription factors.

摘要

在组学实验中,估计和变量选择可能涉及从相对较少的个体中观察到的数千种蛋白质/基因。已经开发了许多回归正则化程序,用于处理此类高维问题中的估计和变量选择。然而,这些方法主要集中在忽略了由于对结果进行重复测量而产生的相关性的线性回归模型上。我们的工作的动机是需要确定蛋白质组生物标志物,以提高对囊性纤维化(CF)肺部疾病个体的快速肺功能下降的预测能力。我们扩展了四种贝叶斯惩罚回归方法,用于具有非平稳协方差结构的高斯线性混合效应模型,以考虑到纵向肺功能数据的复杂结构,同时估计未知参数并选择重要的蛋白质同工型以提高预测性能。评估了不同类型的收缩先验来在完全贝叶斯框架中进行变量选择。我们通过模拟研究了这些方法。我们将提出的方法应用于我们的 CF 研究中的真实蛋白质组学和肺功能结果数据,确定了一组相关的临床/人口统计学预测因子和一个蛋白质组生物标志物,用于快速肺功能下降。我们还在 CD4 酵母细胞周期基因组数据上说明了这些方法,证实了所提出的方法可以识别文献中强调的作为细胞周期转录因子的重要转录因子。

相似文献

1
Bayesian regularization for a nonstationary Gaussian linear mixed effects model.
Stat Med. 2022 Feb 20;41(4):681-697. doi: 10.1002/sim.9279. Epub 2021 Dec 12.
2
The reciprocal Bayesian LASSO.
Stat Med. 2021 Sep 30;40(22):4830-4849. doi: 10.1002/sim.9098. Epub 2021 Jun 14.
4
Applications of Bayesian shrinkage prior models in clinical research with categorical responses.
BMC Med Res Methodol. 2022 Apr 28;22(1):126. doi: 10.1186/s12874-022-01560-6.
5
Model-based clustering of high-dimensional longitudinal data via regularization.
Biometrics. 2023 Jun;79(2):761-774. doi: 10.1111/biom.13672. Epub 2022 Apr 28.
6
Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration.
PLoS One. 2020 Oct 26;15(10):e0241197. doi: 10.1371/journal.pone.0241197. eCollection 2020.
7
Bayesian Methods for High Dimensional Linear Models.
J Biom Biostat. 2013 Jun 1;1:005. doi: 10.4172/2155-6180.S1-005.
8
Bayesian covariance selection in generalized linear mixed models.
Biometrics. 2006 Jun;62(2):446-57. doi: 10.1111/j.1541-0420.2005.00499.x.
9
Study of Bayesian variable selection method on mixed linear regression models.
PLoS One. 2023 Mar 17;18(3):e0283100. doi: 10.1371/journal.pone.0283100. eCollection 2023.
10
Multitrait Bayesian shrinkage and variable selection models with the BGLR-R package.
Genetics. 2022 Aug 30;222(1). doi: 10.1093/genetics/iyac112.

引用本文的文献

1
Hypercubes to identify geomarkers of rapid cystic fibrosis lung disease progression.
BMC Med Inform Decis Mak. 2025 Aug 13;25(1):304. doi: 10.1186/s12911-025-03097-2.
2
Robust identification of environmental exposures and community characteristics predictive of rapid lung disease progression.
Sci Total Environ. 2024 Nov 10;950:175348. doi: 10.1016/j.scitotenv.2024.175348. Epub 2024 Aug 6.
3
Built environment factors predictive of early rapid lung function decline in cystic fibrosis.
Pediatr Pulmonol. 2023 May;58(5):1501-1513. doi: 10.1002/ppul.26352. Epub 2023 Feb 21.

本文引用的文献

1
Dynamic predictive probabilities to monitor rapid cystic fibrosis disease progression.
Stat Med. 2020 Mar 15;39(6):740-756. doi: 10.1002/sim.8443. Epub 2019 Dec 9.
2
Feature selection for high-dimensional temporal data.
BMC Bioinformatics. 2018 Jan 23;19(1):17. doi: 10.1186/s12859-018-2023-7.
3
Joint Bayesian variable and graph selection for regression models with network-structured predictors.
Stat Med. 2016 Mar 30;35(7):1017-31. doi: 10.1002/sim.6792. Epub 2015 Oct 29.
5
Real-time monitoring of progression towards renal failure in primary care patients.
Biostatistics. 2015 Jul;16(3):522-36. doi: 10.1093/biostatistics/kxu053. Epub 2014 Dec 16.
6
Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.
G3 (Bethesda). 2014 Oct 9;4(12):2365-79. doi: 10.1534/g3.114.014068.
7
Bayesian Methods for High Dimensional Linear Models.
J Biom Biostat. 2013 Jun 1;1:005. doi: 10.4172/2155-6180.S1-005.
9
A semiparametric approach to estimate rapid lung function decline in cystic fibrosis.
Ann Epidemiol. 2013 Dec;23(12):771-7. doi: 10.1016/j.annepidem.2013.08.009. Epub 2013 Oct 5.
10
Identification of yeast cell cycle regulated genes based on genomic features.
BMC Syst Biol. 2013 Jul 29;7:70. doi: 10.1186/1752-0509-7-70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验