Suppr超能文献

要不要聚乙二醇化:纳米医学最常用成分聚乙二醇及其替代品的免疫特性。

To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives.

机构信息

Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.

University of North Carolina Charlotte, Charlotte, NC, USA.

出版信息

Adv Drug Deliv Rev. 2022 Jan;180:114079. doi: 10.1016/j.addr.2021.114079. Epub 2021 Dec 10.

Abstract

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.

摘要

聚乙二醇(PEG)在医学领域的应用历史悠久。许多传统制剂将 PEG 用作活性成分或赋形剂。PEG 在生物技术治疗药物中用作一种工具,以减缓药物清除速度,并防止蛋白质治疗药物产生不良的免疫原性。纳米技术领域将 PEG 用于制造具有延长循环时间和降低单核吞噬细胞系统(MPS)识别和清除率的隐形药物载体。大多数已批准临床使用的纳米药物和实验性纳米治疗药物都含有 PEG。最近成功的例子包括两种基于 mRNA 的 COVID-19 疫苗,它们通过聚乙二醇化脂质纳米粒递送至体内。PEG 在各种非处方药(OTC)药物、药物产品和疫苗中的广泛应用刺激了研究,研究揭示 PEG 并不像最初预期的那样具有免疫惰性。在此,我们综述了 PEG 免疫特性的当前认识,并在合成、生物分布、安全性、疗效和聚乙二醇化纳米药物的特性方面对其进行了讨论。我们还综述了当前关于其他正在积极研究以替代 PEG 的聚合物免疫相容性的知识。

相似文献

2
Role of stealth lipids in nanomedicine-based drug carriers.
Chem Phys Lipids. 2021 Mar;235:105036. doi: 10.1016/j.chemphyslip.2020.105036. Epub 2021 Jan 5.
3
DePEGylation strategies to increase cancer nanomedicine efficacy.
Nanoscale Horiz. 2019 Mar 1;4(2):378-387. doi: 10.1039/c8nh00417j. Epub 2018 Dec 11.
4
Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products.
J Control Release. 2022 Nov;351:215-230. doi: 10.1016/j.jconrel.2022.09.031. Epub 2022 Sep 22.
6
Detection of Pre-Existing Antibodies to Polyethylene Glycol and PEGylated Liposomes in Human Serum.
Methods Mol Biol. 2024;2789:185-192. doi: 10.1007/978-1-0716-3786-9_19.
8
Polyethylene glycol (PEG) as a broad applicability marker for LC-MS/MS-based biodistribution analysis of nanomedicines.
J Control Release. 2024 Feb;366:611-620. doi: 10.1016/j.jconrel.2024.01.016. Epub 2024 Jan 13.
9
Engineering poly(ethylene glycol) particles for targeted drug delivery.
Chem Commun (Camb). 2024 Feb 29;60(19):2591-2604. doi: 10.1039/d3cc06098e.

引用本文的文献

2
Lipid nanoparticles: Composition, formulation, and application.
Mol Ther Methods Clin Dev. 2025 Apr 8;33(2):101463. doi: 10.1016/j.omtm.2025.101463. eCollection 2025 Jun 12.
4
Advancing engineering design strategies for targeted cancer nanomedicine.
Nat Rev Cancer. 2025 Aug 1. doi: 10.1038/s41568-025-00847-2.
6
Nanoparticle technologies in precision oncology and personalized vaccine development: Challenges and advances.
Int J Pharm X. 2025 Jul 5;10:100353. doi: 10.1016/j.ijpx.2025.100353. eCollection 2025 Dec.
7
Bioinspired Nanoplatforms: Polydopamine and Exosomes for Targeted Antimicrobial Therapy.
Polymers (Basel). 2025 Jun 16;17(12):1670. doi: 10.3390/polym17121670.
8
Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering.
Gels. 2025 Jun 9;11(6):441. doi: 10.3390/gels11060441.
9
Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy.
Drug Deliv Transl Res. 2025 Jun 14. doi: 10.1007/s13346-025-01887-9.
10
Research progress on lipid nanoparticle messenger RNA delivery system.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jun 4:1-10. doi: 10.3724/zdxbyxb-2024-0709.

本文引用的文献

1
2021: an immunotherapy odyssey and the rise of nucleic acid nanotechnology.
Nanomedicine (Lond). 2021 Aug;16(19):1635-1640. doi: 10.2217/nnm-2021-0097. Epub 2021 Jun 25.
2
Multisystem Inflammatory Syndrome after SARS-CoV-2 Infection and COVID-19 Vaccination.
Emerg Infect Dis. 2021 Jul;27(7):1944-1948. doi: 10.3201/eid2707.210594. Epub 2021 May 25.
3
Are the Allergic Reactions of COVID-19 Vaccines Caused by mRNA Constructs or Nanocarriers? Immunological Insights.
Interdiscip Sci. 2021 Jun;13(2):344-347. doi: 10.1007/s12539-021-00438-3. Epub 2021 May 22.
5
Anaphylactic reactions to mRNA COVID-19 vaccines: A call for further study.
Vaccine. 2021 May 6;39(19):2605-2607. doi: 10.1016/j.vaccine.2021.03.073. Epub 2021 Apr 6.
6
Disproportionality analysis of anaphylactic reactions after vaccination with messenger RNA coronavirus disease 2019 vaccines in the United States.
Ann Allergy Asthma Immunol. 2021 Jul;127(1):139-140. doi: 10.1016/j.anai.2021.04.004. Epub 2021 Apr 8.
8
Hypersensitivity reaction to Hyaluronic Acid Dermal filler following novel Coronavirus infection - a case report.
J Cosmet Dermatol. 2021 May;20(5):1557-1562. doi: 10.1111/jocd.14074. Epub 2021 Apr 1.
10
Site-specific conjugation of native antibody.
Antib Ther. 2020 Dec;3(4):271-284. doi: 10.1093/abt/tbaa027. Epub 2020 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验