Suppr超能文献

基于硫醇化明胶/PEGDA 互穿网络水凝胶的制备参数依赖性物理化学性质研究。

Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.

机构信息

Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Korea.

出版信息

Tissue Eng Regen Med. 2022 Apr;19(2):309-319. doi: 10.1007/s13770-021-00413-5. Epub 2021 Dec 14.

Abstract

BACKGROUND

The development of three-dimensional hydrogels using polymeric biomaterials is a key technology for tissue engineering and regenerative medicine. Successful tissue engineering requires the control and identification of the physicochemical properties of hydrogels.

METHODS

Interpenetrating network (IPN) hydrogel was developed using thiolated gelatin (GSH) and poly(ethylene glycol) diacrylate (PEGDA), with the aid of ammonium persulfate (APS) and N,N,N,N'-tetramethylethylenediamine (TEMED) as radical initiators. Each component was prepared in the following concentrations, respectively: 2.5 and 5% GSH (LG and HG), 12.5 and 25% PEGDA (LP and HP), 3% APS/1.5% TEMED (LI), and 4% APS/2% TEMED (HI). IPN hydrogel was fabricated by the mixing of GSH, PEGDA, and initiators in 5:4:1 volume ratios, and incubated at 37 °C for 30 min in the following 6 experimental formulations: (1) HG-LP-LI, (2) HG-LP-HI, (3) LG-HP-LI, (4) LG-HP-HI, (5) HG-HP-HI, and (6) HG-HP-LI. Herein, the physico-chemical characteristics of IPN hydrogels, including their morphological structures, hydrolytic degradation properties, mechanical properties, embedded protein release kinetics, and biocompatibility, were investigated.

RESULTS

The characteristics of the hydrogel were significantly manipulated by the concentration of the polymer, especially the conversion between HP and LP, rather than the concentration of the initiator, and no hydrogel formulation exhibited any toxicity to fibroblast and HaCaT cells.

CONCLUSION

We provide structural-physical relationships of the hydrogels by which means their physical properties could be conveniently controlled through component control, which could be versatilely utilized for various organizational engineering strategies.

摘要

背景

使用聚合生物材料开发三维水凝胶是组织工程和再生医学的关键技术。成功的组织工程需要控制和识别水凝胶的物理化学性质。

方法

使用巯基化明胶(GSH)和聚乙二醇二丙烯酸酯(PEGDA)通过过硫酸铵(APS)和 N,N,N',N'-四甲基乙二胺(TEMED)作为自由基引发剂开发互穿网络(IPN)水凝胶。每个组件分别按以下浓度制备:2.5 和 5%GSH(LG 和 HG),12.5 和 25%PEGDA(LP 和 HP),3%A PS/1.5%TEMED(LI)和 4%A PS/2%TEMED(HI)。通过将 GSH、PEGDA 和引发剂以 5:4:1 的体积比混合,在 37°C 下孵育 30 分钟,制备 IPN 水凝胶,并在以下 6 种实验配方中进行:(1)HG-LP-LI,(2)HG-LP-HI,(3)LG-HP-LI,(4)LG-HP-HI,(5)HG-HP-HI 和(6)HG-HP-LI。在此,研究了 IPN 水凝胶的物理化学特性,包括其形态结构、水解降解特性、力学性能、嵌入式蛋白质释放动力学和生物相容性。

结果

水凝胶的特性通过聚合物的浓度显著控制,特别是 HP 和 LP 之间的转换,而不是引发剂的浓度,并且没有水凝胶配方对成纤维细胞和 HaCaT 细胞表现出任何毒性。

结论

我们提供了水凝胶的结构-物理关系,通过该关系可以通过组分控制方便地控制其物理性质,这可以广泛用于各种组织工程策略。

相似文献

1
Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.
Tissue Eng Regen Med. 2022 Apr;19(2):309-319. doi: 10.1007/s13770-021-00413-5. Epub 2021 Dec 14.
2
Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
J Biomed Mater Res A. 2016 Oct;104(10):2401-11. doi: 10.1002/jbm.a.35779. Epub 2016 May 30.
3
3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.
Biomaterials. 2012 Jan;33(1):48-58. doi: 10.1016/j.biomaterials.2011.09.031. Epub 2011 Sep 28.
4
Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration.
Acta Biomater. 2015 Mar;14:43-52. doi: 10.1016/j.actbio.2014.12.007. Epub 2014 Dec 15.
5
Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
J Biomater Appl. 2022 Jan;36(6):1019-1032. doi: 10.1177/08853282211044853. Epub 2021 Oct 4.
7
Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering.
Acta Biomater. 2019 Mar 15;87:97-107. doi: 10.1016/j.actbio.2019.01.058. Epub 2019 Jan 30.
9
Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate.
Mater Sci Eng C Mater Biol Appl. 2021 Oct;129:112360. doi: 10.1016/j.msec.2021.112360. Epub 2021 Aug 9.
10
Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.
Tissue Eng Part B Rev. 2018 Feb;24(1):66-74. doi: 10.1089/ten.TEB.2016.0442. Epub 2017 Aug 24.

引用本文的文献

1
Design and Characterization of Hybrid Gelatin/PEGDA Hydrogels with Tunable Viscoelastic Properties.
Biomacromolecules. 2025 Aug 11;26(8):5450-5460. doi: 10.1021/acs.biomac.5c01048. Epub 2025 Jul 24.
2
Solvent-free enzymatic synthesis and evaluation of vanillyl propionate as an effective and biocompatible preservative.
Bioprocess Biosyst Eng. 2023 Nov;46(11):1579-1590. doi: 10.1007/s00449-023-02921-1. Epub 2023 Sep 8.
3
Influence of pH on the release of an active principle from 3D printed carrageenan-k combined with alginate or xanthan gum.
Heliyon. 2023 Jun 5;9(6):e16850. doi: 10.1016/j.heliyon.2023.e16850. eCollection 2023 Jun.
5
Nano-sized Materials for Tissue Regeneration and Immune/Cancer Therapy.
Tissue Eng Regen Med. 2022 Apr;19(2):203-204. doi: 10.1007/s13770-022-00453-5.

本文引用的文献

1
Degradation Profiles of Poly(ethylene glycol) diacrylate (PEGDA)-based hydrogel nanoparticles.
Polym Chem. 2020 Jan 14;11(2):568-580. doi: 10.1039/c9py01206k. Epub 2019 Oct 23.
3
Nanocomposite hydrogels for tissue engineering applications.
Nanoscale. 2020 Jul 23;12(28):14976-14995. doi: 10.1039/d0nr03785k.
5
Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair.
J Mater Chem B. 2017 Jan 28;5(4):731-741. doi: 10.1039/c6tb02348g. Epub 2017 Jan 3.
6
Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure.
J Mater Chem B. 2014 Jun 21;2(23):3646-3658. doi: 10.1039/c3tb21711f. Epub 2014 May 9.
7
A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states.
J Mater Chem B. 2016 Sep 21;4(35):5814-5824. doi: 10.1039/c6tb01511e. Epub 2016 Aug 18.
8
Development of a hybrid gelatin hydrogel platform for tissue engineering and protein delivery applications.
J Mater Chem B. 2015 Aug 14;3(30):6368-6376. doi: 10.1039/c5tb00645g. Epub 2015 Jul 10.
9
Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications.
Macromol Biosci. 2020 Mar;20(3):e1900300. doi: 10.1002/mabi.201900300. Epub 2019 Dec 29.
10
Smart Hydrogels in Tissue Engineering and Regenerative Medicine.
Materials (Basel). 2019 Oct 12;12(20):3323. doi: 10.3390/ma12203323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验