Suppr超能文献

经改良的马蹄蟹肽可靶向并杀死宿主细胞内的细菌。

Modified horseshoe crab peptides target and kill bacteria inside host cells.

机构信息

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.

Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.

出版信息

Cell Mol Life Sci. 2021 Dec 31;79(1):38. doi: 10.1007/s00018-021-04041-z.

Abstract

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.

摘要

占据细胞内生态位的细菌可以逃避细胞外宿主免疫反应和抗菌分子。除了经典的细胞内病原体外,其他细菌,包括尿路致病性大肠杆菌(UPEC),也可以采用细胞外和细胞内生活方式。UPEC 的细胞内存活和复制使治疗变得复杂,因为许多治疗性分子不能有效地到达感染周期的所有组成部分。在这项研究中,我们探索了来自不同结构类别的穿透细胞膜的抗菌肽,作为针对细菌的替代分子。我们从鲎中鉴定了两种β发夹肽,即 tachyplesin I 和 polyphemusin I,它们对浮游形式的一组致病性和非致病性细菌具有广泛的抗菌活性。肽类似物 [I11A]tachyplesin I 和 [I11S]tachyplesin I 保持对细菌的活性,但对哺乳动物细胞的毒性低于天然 tachyplesin I。这种治疗窗口的重要增加允许使用更高浓度的 [I11A]tachyplesin I 和 [I11S]tachyplesin I 进行治疗,从而显著降低体外感染模型中 UPEC 在内噬细胞中的存活。使用细菌细胞、模型膜和细胞膜提取物进行的机制研究表明,tachyplesin I 和 polyphemusin I 肽通过选择性结合和破坏细菌细胞膜来杀死 UPEC。此外,用亚致死浓度的肽处理 UPEC 会增加锌毒性并增强先天巨噬细胞抗菌途径。总之,我们的综合数据表明,穿透细胞膜的肽是治疗 UPEC 感染的传统小分子抗生素的有吸引力的替代品,并且优化天然肽序列可以提供针对细胞外和细胞内环境中细菌的有效抗菌剂。

相似文献

1
Modified horseshoe crab peptides target and kill bacteria inside host cells.
Cell Mol Life Sci. 2021 Dec 31;79(1):38. doi: 10.1007/s00018-021-04041-z.
2
Apoptosis-like death-inducing property of tachyplesin I in Escherichia coli.
J Basic Microbiol. 2021 Sep;61(9):795-807. doi: 10.1002/jobm.202100133. Epub 2021 Aug 1.
6
Cytotoxic Potential of the Novel Horseshoe Crab Peptide Polyphemusin III.
Mar Drugs. 2018 Nov 26;16(12):466. doi: 10.3390/md16120466.
8
Structure-function relationships of tachyplesins and their analogues.
Ciba Found Symp. 1994;186:160-74; discussion 174-5. doi: 10.1002/9780470514658.ch10.
9
Cyclic Analogues of Horseshoe Crab Peptide Tachyplesin I with Anticancer and Cell Penetrating Properties.
ACS Chem Biol. 2019 Dec 20;14(12):2895-2908. doi: 10.1021/acschembio.9b00782. Epub 2019 Nov 27.
10
Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1.
ACS Infect Dis. 2017 Dec 8;3(12):917-926. doi: 10.1021/acsinfecdis.7b00123. Epub 2017 Oct 3.

引用本文的文献

1
Exploring Use of a Protein Cage System for Producing Bioactive Peptides in Escherichia coli.
Microb Biotechnol. 2025 Jun;18(6):e70158. doi: 10.1111/1751-7915.70158.
2
The application and prospects of antimicrobial peptides in antiviral therapy.
Amino Acids. 2024 Dec 4;56(1):68. doi: 10.1007/s00726-024-03427-0.
3
The Anti-Caries Effects of a Novel Peptide on Dentine Caries: An In Vitro Study.
Int J Mol Sci. 2023 Sep 14;24(18):14076. doi: 10.3390/ijms241814076.
4
Antibacterial Properties of the Antimicrobial Peptide Gallic Acid-Polyphemusin I (GAPI).
Antibiotics (Basel). 2023 Aug 22;12(9):1350. doi: 10.3390/antibiotics12091350.
5
Cell-Penetrating Antimicrobial Peptides with Anti-Infective Activity against Intracellular Pathogens.
Antibiotics (Basel). 2022 Dec 8;11(12):1772. doi: 10.3390/antibiotics11121772.
6
Transcriptomic Signature of Horseshoe Crab Hemocytes' Response to Lipopolysaccharides.
Curr Issues Mol Biol. 2022 Nov 25;44(12):5866-5878. doi: 10.3390/cimb44120399.
7
Co-expression Mechanism Analysis of Different Tachyplesin I-Resistant Strains in Based on Transcriptome Sequencing.
Front Microbiol. 2022 Apr 7;13:871290. doi: 10.3389/fmicb.2022.871290. eCollection 2022.

本文引用的文献

2
Apocryphal FADS2 activity promotes fatty acid diversification in cancer.
Cell Rep. 2021 Feb 9;34(6):108738. doi: 10.1016/j.celrep.2021.108738.
3
Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells.
Biochim Biophys Acta Biomembr. 2021 Jan 1;1863(1):183480. doi: 10.1016/j.bbamem.2020.183480. Epub 2020 Sep 24.
4
An alloy of zinc and innate immunity: Galvanising host defence against infection.
Cell Microbiol. 2021 Jan;23(1):e13268. doi: 10.1111/cmi.13268. Epub 2020 Oct 9.
5
Safer In Vitro Drug Screening Models for Melioidosis Therapy Development.
Am J Trop Med Hyg. 2020 Nov;103(5):1846-1851. doi: 10.4269/ajtmh.20-0248.
6
Epidemiology, definition and treatment of complicated urinary tract infections.
Nat Rev Urol. 2020 Oct;17(10):586-600. doi: 10.1038/s41585-020-0362-4. Epub 2020 Aug 25.
7
Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens.
Front Microbiol. 2020 Apr 23;11:563. doi: 10.3389/fmicb.2020.00563. eCollection 2020.
8
Design, Synthesis, and Bioactivity of Cyclic Lipopeptide Antibiotics with Varied Polarity, Hydrophobicity, and Positive Charge Distribution.
ACS Infect Dis. 2020 Jul 10;6(7):1796-1806. doi: 10.1021/acsinfecdis.0c00056. Epub 2020 May 6.
10
Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding.
J Am Chem Soc. 2019 Dec 26;141(51):20460-20469. doi: 10.1021/jacs.9b11194. Epub 2019 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验