State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Agriculture, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, Guangdong 510642, China.
J Genet Genomics. 2022 May;49(5):394-404. doi: 10.1016/j.jgg.2021.12.006. Epub 2021 Dec 30.
Nitrogen (N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoyl phosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops-rice, maize, and wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
氮(N)是作物产量的驱动力;然而,农业中过量施用氮肥不仅增加了生产成本,还会导致严重的环境问题。因此,全面了解氮利用效率(NUE)的分子机制并培育具有更高 NUE 的作物对于解决这些问题至关重要。作物的 NUE 由氮的吸收、运输、同化和再利用决定。在氮同化过程中,硝酸还原酶(NR)、亚硝酸还原酶(NiR)、谷氨酰胺合成酶(GS)和谷氨酰胺-2-酮戊二酸氨基转移酶(GOGAT,也称为谷氨酸合酶)是主要的酶。NR 和 NiR 介导无机氮利用的开始,GS/GOGAT 循环将无机氮转化为有机氮,在氮同化和作物最终 NUE 中起着至关重要的作用。此外,天冬酰胺合成酶(ASN)、谷氨酸脱氢酶(GDH)和氨甲酰磷酸合成酶(CPSase)也参与其中。在这篇综述中,我们总结了这些酶在三大作物(水稻、玉米和小麦)以及模式植物拟南芥中的功能和调控作用,并强调了通过操纵氮同化来提高作物 NUE 的应用。讨论了充分理解氮同化功能和进一步探索提高 NUE 潜力所面临的预期挑战和前景。