Tuncer Turker, Dogan Sengul, Baygin Mehmet, Rajendra Acharya U
Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
Artif Intell Med. 2022 Jan;123:102210. doi: 10.1016/j.artmed.2021.102210. Epub 2021 Nov 4.
Nowadays, emotion recognition using electroencephalogram (EEG) signals is becoming a hot research topic. The aim of this paper is to classify emotions of EEG signals using a novel game-based feature generation function with high accuracy. Hence, a multileveled handcrafted feature generation automated emotion classification model using EEG signals is presented. A novel textural features generation method inspired by the Tetris game called Tetromino is proposed in this work. The Tetris game is one of the famous games worldwide, which uses various characters in the game. First, the EEG signals are subjected to discrete wavelet transform (DWT) to create various decomposition levels. Then, novel features are generated from the decomposed DWT sub-bands using the Tetromino method. Next, the maximum relevance minimum redundancy (mRMR) features selection method is utilized to select the most discriminative features, and the selected features are classified using support vector machine classifier. Finally, each channel's results (validation predictions) are obtained, and the mode function-based voting method is used to obtain the general results. We have validated our developed model using three databases (DREAMER, GAMEEMO, and DEAP). We have attained 100% accuracies using DREAMER and GAMEEMO datasets. Furthermore, over 99% of classification accuracy is achieved for DEAP dataset. Thus, our developed emotion detection model has yielded the best classification accuracy rate compared to the state-of-the-art techniques and is ready to be tested for clinical application after validating with more diverse datasets. Our results show the success of the presented Tetromino pattern-based EEG signal classification model validated using three public emotional EEG datasets.
如今,利用脑电图(EEG)信号进行情感识别正成为一个热门的研究课题。本文的目的是使用一种新颖的基于游戏的特征生成函数对EEG信号的情感进行高精度分类。因此,提出了一种使用EEG信号的多级手工特征生成自动情感分类模型。在这项工作中,提出了一种受俄罗斯方块游戏启发的名为Tetromino的新颖纹理特征生成方法。俄罗斯方块游戏是全球著名的游戏之一,在游戏中使用了各种角色。首先,对EEG信号进行离散小波变换(DWT)以创建各种分解级别。然后,使用Tetromino方法从分解后的DWT子带中生成新颖的特征。接下来,利用最大相关性最小冗余(mRMR)特征选择方法选择最具判别力的特征,并使用支持向量机分类器对所选特征进行分类。最后,获得每个通道的结果(验证预测),并使用基于模式函数的投票方法获得总体结果。我们使用三个数据库(DREAMER、GAMEEMO和DEAP)对我们开发的模型进行了验证。使用DREAMER和GAMEEMO数据集我们达到了100%的准确率。此外,对于DEAP数据集,分类准确率超过了99%。因此,与现有技术相比,我们开发的情感检测模型产生了最佳的分类准确率,并且在使用更多样化的数据集进行验证后准备进行临床应用测试。我们的结果表明,所提出的基于Tetromino模式的EEG信号分类模型在使用三个公共情感EEG数据集进行验证时取得了成功。