Suppr超能文献

基于增强现实系统的基于 ECG 的生物识别的有效个性化自动编码器(PerAE)。

PerAE: An Effective Personalized AutoEncoder for ECG-Based Biometric in Augmented Reality System.

出版信息

IEEE J Biomed Health Inform. 2022 Jun;26(6):2435-2446. doi: 10.1109/JBHI.2022.3145999. Epub 2022 Jun 3.

Abstract

With the development of the Augmented and Virtual Reality (AR/VR) technologies, massive biometric data are collected by different organizations. These data have great significance but also worsen the privacy risks. Electro-CardioGram (ECG)-based Identity Recognition (EIR) is a popular Biometric technology. An ECG record is an internal Biology feature of a person and has time continuity. Thus, compared with traditional Biometric methods like face recognition, EIR may be less vulnerable to attack. We propose an Autoencoder-based EIR system, called Personalized AutoEncoder (PerAE). PerAE maintains a small autoencoder model (called Attention-MemAE) for each registered user of a system. The Attention-MemAE enhances the autoencoder by using a memory module and two attention mechanisms. A user's Attention-MemAE classifies the hearbeats of other users as anomalies. An Attention-MemAE can be updated when the distribution of the user's ECG data is changed. By using personalized autoencoder, PerAE can improve the time efficiency and reduce the memory overhead. It improves the adaptability, scalability, and maintainability of EIR systems. Experiment results show that to train an Attention-MemAE with 90 % identification accuracy for a user, we can just take five minutes to collect the user's ECG data (around 500 heartbeat samples).

摘要

随着增强现实(AR)和虚拟现实(VR)技术的发展,大量的生物识别数据被不同的组织收集。这些数据具有重要意义,但也增加了隐私风险。基于心电图(ECG)的身份识别(EIR)是一种流行的生物识别技术。心电图记录是一个人的内部生物学特征,具有时间连续性。因此,与传统的生物识别方法(如人脸识别)相比,EIR 可能不易受到攻击。我们提出了一种基于自动编码器的 EIR 系统,称为个性化自动编码器(PerAE)。PerAE 为系统中的每个注册用户维护一个小的自动编码器模型(称为注意力记忆自动编码器(Attention-MemAE))。注意力记忆自动编码器通过使用记忆模块和两个注意力机制来增强自动编码器。用户的 Attention-MemAE 将其他用户的心跳分类为异常。当用户的 ECG 数据分布发生变化时,可以更新 Attention-MemAE。通过使用个性化自动编码器,PerAE 可以提高时间效率并减少内存开销。它提高了 EIR 系统的适应性、可扩展性和可维护性。实验结果表明,要为用户训练一个具有 90%识别准确率的 Attention-MemAE,我们只需花费五分钟时间来收集用户的 ECG 数据(约 500 个心跳样本)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验