Suppr超能文献

使用多平面重建磁共振对比增强T1加权成像开发并验证用于胶质瘤分级的深度学习和放射组学模型:一项稳健的多机构研究

Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.

作者信息

Ding Jialin, Zhao Rubin, Qiu Qingtao, Chen Jinhu, Duan Jinghao, Cao Xiujuan, Yin Yong

机构信息

School of Physics and Electronics, Shandong Normal University, Jinan, China.

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Quant Imaging Med Surg. 2022 Feb;12(2):1517-1528. doi: 10.21037/qims-21-722.

Abstract

BACKGROUND

Although surgical pathology or biopsy are considered the gold standard for glioma grading, these procedures have limitations. This study set out to evaluate and validate the predictive performance of a deep learning radiomics model based on contrast-enhanced T1-weighted multiplanar reconstruction images for grading gliomas.

METHODS

Patients from three institutions who diagnosed with gliomas by surgical specimen and multiplanar reconstructed (MPR) images were enrolled in this study. The training cohort included 101 patients from institution 1, including 43 high-grade glioma (HGG) patients and 58 low-grade glioma (LGG) patients, while the test cohorts consisted of 50 patients from institutions 2 and 3 (25 HGG patients, 25 LGG patients). We then extracted radiomics features and deep learning features using six pretrained models from the MPR images. The Spearman correlation test and the recursive elimination feature selection method were used to reduce the redundancy and select most predictive features. Subsequently, three classifiers were used to construct classification models. The performance of the grading models was evaluated using the area under the receiver operating curve, sensitivity, specificity, accuracy, precision, and negative predictive value. Finally, the prediction performances of the test cohort were compared to determine the optimal classification model.

RESULTS

For the training cohort, 62% (13 out of 21) of the classification models constructed with MPR images from multiple planes outperformed those constructed with single-plane MPR images, and 61% (11 out of 18) of classification models constructed with both radiomics features and deep learning features had higher area under the curve (AUC) values than those constructed with only radiomics or deep learning features. The optimal model was a random forest model that combined radiomic features and VGG16 deep learning features derived from MPR images, which achieved AUC of 0.847 in the training cohort and 0.898 in the test cohort. In the test cohort, the sensitivity, specificity, and accuracy of the optimal model were 0.840, 0.760, and 0.800, respectively.

CONCLUSIONS

Multiplanar CE-T1W MPR imaging features are more effective than features from single planes when differentiating HGG and LGG. The combination of deep learning features and radiomics features can effectively grade glioma and assist clinical decision-making.

摘要

背景

尽管手术病理或活检被认为是胶质瘤分级的金标准,但这些方法存在局限性。本研究旨在评估和验证基于对比增强T1加权多平面重建图像的深度学习放射组学模型对胶质瘤分级的预测性能。

方法

本研究纳入了来自三个机构的患者,这些患者通过手术标本和多平面重建(MPR)图像被诊断为胶质瘤。训练队列包括来自机构1的101例患者,其中43例为高级别胶质瘤(HGG)患者,58例为低级别胶质瘤(LGG)患者,而测试队列由来自机构2和3的50例患者组成(25例HGG患者,25例LGG患者)。然后,我们使用来自MPR图像的六个预训练模型提取放射组学特征和深度学习特征。使用Spearman相关性检验和递归消除特征选择方法来减少冗余并选择最具预测性的特征。随后,使用三个分类器构建分类模型。使用受试者操作曲线下面积、敏感性、特异性、准确性、精确性和阴性预测值来评估分级模型的性能。最后,比较测试队列的预测性能以确定最佳分类模型。

结果

对于训练队列,使用来自多个平面的MPR图像构建的分类模型中有62%(21个中的13个)优于使用单平面MPR图像构建的模型,并且使用放射组学特征和深度学习特征构建的分类模型中有61%(18个中的11个)的曲线下面积(AUC)值高于仅使用放射组学或深度学习特征构建的模型。最佳模型是一个随机森林模型,它结合了从MPR图像中提取的放射组学特征和VGG16深度学习特征,在训练队列中AUC为0.847,在测试队列中为0.898。在测试队列中,最佳模型的敏感性、特异性和准确性分别为0.840、0.760和0.800。

结论

在区分HGG和LGG时,多平面CE-T1W MPR成像特征比单平面特征更有效。深度学习特征和放射组学特征的结合可以有效地对胶质瘤进行分级并辅助临床决策。

相似文献

2
Radiomics strategy for glioma grading using texture features from multiparametric MRI.
J Magn Reson Imaging. 2018 Dec;48(6):1518-1528. doi: 10.1002/jmri.26010. Epub 2018 Mar 23.
3
MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.
Front Oncol. 2024 May 13;14:1401977. doi: 10.3389/fonc.2024.1401977. eCollection 2024.
4
Classification of the glioma grading using radiomics analysis.
PeerJ. 2018 Nov 22;6:e5982. doi: 10.7717/peerj.5982. eCollection 2018.

引用本文的文献

1
The Diagnostic Value of Susceptibility-Weighted Imaging in Preoperative Grading of Glial Tumors.
Cureus. 2025 Aug 10;17(8):e89757. doi: 10.7759/cureus.89757. eCollection 2025 Aug.
7
One-stop detection of anterior cruciate ligament injuries on magnetic resonance imaging using deep learning with multicenter validation.
Quant Imaging Med Surg. 2024 May 1;14(5):3405-3416. doi: 10.21037/qims-23-1539. Epub 2024 Apr 10.
8
MRI-based Machine Learning Radiomics Can Predict CSF1R Expression Level and Prognosis in High-grade Gliomas.
J Imaging Inform Med. 2024 Feb;37(1):209-229. doi: 10.1007/s10278-023-00905-x. Epub 2024 Jan 24.
9
Advances in the Use of Deep Learning for the Analysis of Magnetic Resonance Image in Neuro-Oncology.
Cancers (Basel). 2024 Jan 10;16(2):300. doi: 10.3390/cancers16020300.

本文引用的文献

1
Observing deep radiomics for the classification of glioma grades.
Sci Rep. 2021 May 25;11(1):10942. doi: 10.1038/s41598-021-90555-2.
3
Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution.
Front Med. 2021 Aug;15(4):551-561. doi: 10.1007/s11684-020-0760-2. Epub 2021 Apr 24.
5
Surgical planning of pelvic tumor using multi-view CNN with relation-context representation learning.
Med Image Anal. 2021 Apr;69:101954. doi: 10.1016/j.media.2020.101954. Epub 2021 Jan 6.
6
Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy.
Pharmacol Ther. 2021 Jun;222:107790. doi: 10.1016/j.pharmthera.2020.107790. Epub 2020 Dec 11.
7
Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2020 Nov 2;18(11):1537-1570. doi: 10.6004/jnccn.2020.0052.
8
Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning.
Med Image Anal. 2021 Jan;67:101819. doi: 10.1016/j.media.2020.101819. Epub 2020 Sep 28.
10
Artificial intelligence, radiomics and other horizons in body composition assessment.
Quant Imaging Med Surg. 2020 Aug;10(8):1650-1660. doi: 10.21037/qims.2020.03.10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验