Suppr超能文献

《与轨迹群相关的字符串方法的伴侣指南:特征描述、性能与缺陷》

A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls.

机构信息

Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.

Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Chem Theory Comput. 2022 Mar 8;18(3):1406-1422. doi: 10.1021/acs.jctc.1c01049. Epub 2022 Feb 9.

Abstract

The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.

摘要

群体轨迹字符串方法 (SMwST) 是一种算法,用于识别物理上有意义的转变途径——一条嵌入在所选集体变量高维空间中的一维曲线。SMwST 算法依赖于一系列短的、无偏的分子动力学模拟,这些模拟在离散路径的不同位置产生,从中确定平均动态漂移,以将字符串向最佳路径演变。尽管在理论公式和实际实现方面都非常简单,但 SMwST 算法计算量很大,并且需要仔细选择参数,以在化学和生物学中的挑战性问题的应用中实现最佳的成本效益。在本贡献中,以自包含的方式呈现了 SMwST 算法,用批判的眼光讨论了其理论基础、适用性、内在局限性以及在路径跟随自由能计算中的应用,以及它们可能扩展到动力学建模。通过对典型多肽的多次模拟,结合转变途径的搜索和沿其计算平均力势,检查了该方法的几个实际方面,目的是优化计算工作量,同时又不牺牲准确性。根据这里报告的结果,我们提出了一些通用准则,旨在提高所计算途径的效率和可靠性,并改善当前构象转变的自由能分布。

相似文献

1
A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls.
J Chem Theory Comput. 2022 Mar 8;18(3):1406-1422. doi: 10.1021/acs.jctc.1c01049. Epub 2022 Feb 9.
2
Finding transition pathways using the string method with swarms of trajectories.
J Phys Chem B. 2008 Mar 20;112(11):3432-40. doi: 10.1021/jp0777059. Epub 2008 Feb 22.
3
Committor-Consistent Variational String Method.
J Phys Chem Lett. 2022 Oct 13;13(40):9263-9271. doi: 10.1021/acs.jpclett.2c02529. Epub 2022 Sep 29.
4
String Method with Swarms-of-Trajectories, Mean Drifts, Lag Time, and Committor.
J Phys Chem A. 2021 Sep 2;125(34):7558-7571. doi: 10.1021/acs.jpca.1c04110. Epub 2021 Aug 18.
5
The adaptive biasing force method: everything you always wanted to know but were afraid to ask.
J Phys Chem B. 2015 Jan 22;119(3):1129-51. doi: 10.1021/jp506633n. Epub 2014 Oct 7.
6
Comparison between Mean Forces and Swarms-of-Trajectories String Methods.
J Chem Theory Comput. 2014 Feb 11;10(2):524-33. doi: 10.1021/ct400606c.
8
String Method for Protein-Protein Binding Free-Energy Calculations.
J Chem Theory Comput. 2019 Nov 12;15(11):5829-5844. doi: 10.1021/acs.jctc.9b00499. Epub 2019 Oct 31.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
A Sinking Approach to Explore Arbitrary Areas in Free Energy Landscapes.
JACS Au. 2025 Jun 2;5(6):2898-2908. doi: 10.1021/jacsau.5c00460. eCollection 2025 Jun 23.
2
Expanded Functionality and Portability for the Colvars Library.
J Phys Chem B. 2024 Nov 14;128(45):11108-11123. doi: 10.1021/acs.jpcb.4c05604. Epub 2024 Nov 5.
3
Deciphering the Interdomain Coupling in a Gram-Negative Bacterial Membrane Insertase.
J Phys Chem B. 2024 Oct 10;128(40):9734-9744. doi: 10.1021/acs.jpcb.4c02824. Epub 2024 Sep 27.
4
A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis.
PLoS Comput Biol. 2024 Apr 25;20(4):e1012005. doi: 10.1371/journal.pcbi.1012005. eCollection 2024 Apr.
5
Elucidating molecular mechanisms of protoxin-II state-specific binding to the human NaV1.7 channel.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202313368. Epub 2023 Dec 21.
6
Improved Sampling of Adaptive Path Collective Variables by Stabilized Extended-System Dynamics.
J Chem Theory Comput. 2023 Dec 26;19(24):9202-9210. doi: 10.1021/acs.jctc.3c00938. Epub 2023 Dec 11.
7
Molecular Free Energies, Rates, and Mechanisms from Data-Efficient Path Sampling Simulations.
J Chem Theory Comput. 2023 Dec 26;19(24):9060-9076. doi: 10.1021/acs.jctc.3c00821. Epub 2023 Nov 21.
8
Chasing collective variables using temporal data-driven strategies.
QRB Discov. 2023 Jan 6;4:e2. doi: 10.1017/qrd.2022.23. eCollection 2023.
9
Perspective: Path Sampling Methods Applied to Enzymatic Catalysis.
J Chem Theory Comput. 2022 Nov 8;18(11):6397-6406. doi: 10.1021/acs.jctc.2c00734. Epub 2022 Oct 28.
10
An investigation of the YidC-mediated membrane insertion of Pf3 coat protein using molecular dynamics simulations.
Front Mol Biosci. 2022 Aug 15;9:954262. doi: 10.3389/fmolb.2022.954262. eCollection 2022.

本文引用的文献

1
String Method with Swarms-of-Trajectories, Mean Drifts, Lag Time, and Committor.
J Phys Chem A. 2021 Sep 2;125(34):7558-7571. doi: 10.1021/acs.jpca.1c04110. Epub 2021 Aug 18.
2
Confronting pitfalls of AI-augmented molecular dynamics using statistical physics.
J Chem Phys. 2020 Dec 21;153(23):234118. doi: 10.1063/5.0030931.
4
Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of V complex.
Sci Adv. 2020 Oct 7;6(41). doi: 10.1126/sciadv.abb9605. Print 2020 Oct.
5
Scalable molecular dynamics on CPU and GPU architectures with NAMD.
J Chem Phys. 2020 Jul 28;153(4):044130. doi: 10.1063/5.0014475.
6
Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape.
J Chem Inf Model. 2020 Nov 23;60(11):5366-5374. doi: 10.1021/acs.jcim.0c00279. Epub 2020 Jun 10.
7
Taming Rugged Free Energy Landscapes Using an Average Force.
Acc Chem Res. 2019 Nov 19;52(11):3254-3264. doi: 10.1021/acs.accounts.9b00473. Epub 2019 Nov 4.
9
Relative Principal Components Analysis: Application to Analyzing Biomolecular Conformational Changes.
J Chem Theory Comput. 2019 Apr 9;15(4):2166-2178. doi: 10.1021/acs.jctc.8b01074. Epub 2019 Mar 6.
10
Committors, first-passage times, fluxes, Markov states, milestones, and all that.
J Chem Phys. 2019 Feb 7;150(5):054106. doi: 10.1063/1.5079742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验