Suppr超能文献

比较基于电子健康记录中的问题列表和就诊诊断来确定慢性病状况的准确性。

Comparing ascertainment of chronic condition status with problem lists versus encounter diagnoses from electronic health records.

机构信息

OCHIN, Inc, Portland, Oregon, USA.

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

J Am Med Inform Assoc. 2022 Apr 13;29(5):770-778. doi: 10.1093/jamia/ocac016.

Abstract

OBJECTIVE

To assess and compare electronic health record (EHR) documentation of chronic disease in problem lists and encounter diagnosis records among Community Health Center (CHC) patients.

MATERIALS AND METHODS

We assessed patient EHR data in a large clinical research network during 2012-2019. We included CHCs who provided outpatient, older adult primary care to patients age ≥45 years, with ≥2 office visits during the study. Our study sample included 1 180 290 patients from 545 CHCs across 22 states. We used diagnosis codes from 39 Chronic Condition Warehouse algorithms to identify chronic conditions from encounter diagnoses only and compared against problem list records. We measured correspondence including agreement, kappa, prevalence index, bias index, and prevalence-adjusted bias-adjusted kappa.

RESULTS

Overlap of encounter diagnosis and problem list ascertainment was 59.4% among chronic conditions identified, with 12.2% of conditions identified only in encounters and 28.4% identified only in problem lists. Rates of coidentification varied by condition from 7.1% to 84.4%. Greatest agreement was found in diabetes (84.4%), HIV (78.1%), and hypertension (74.7%). Sixteen conditions had <50% agreement, including cancers and substance use disorders. Overlap for mental health conditions ranged from 47.4% for anxiety to 59.8% for depression.

DISCUSSION

Agreement between the 2 sources varied substantially. Conditions requiring regular management in primary care settings may have a higher agreement than those diagnosed and treated in specialty care.

CONCLUSION

Relying on EHR encounter data to identify chronic conditions without reference to patient problem lists may under-capture conditions among CHC patients in the United States.

摘要

目的

评估和比较社区医疗中心(CHC)患者的电子健康记录(EHR)中的慢性病问题列表和就诊记录中的文档。

材料和方法

我们在 2012 年至 2019 年期间评估了大型临床研究网络中的患者 EHR 数据。我们纳入了提供门诊、45 岁以上老年初级保健服务、研究期间有≥2 次就诊的 CHC。我们的研究样本包括来自 22 个州的 545 家 CHC 的 1180290 名患者。我们使用 39 个慢性疾病仓库算法的诊断代码仅从就诊诊断中识别慢性病,并与问题列表记录进行比较。我们测量了一致性,包括一致性、kappa、患病率指数、偏差指数和患病率调整偏差调整的 kappa。

结果

在确定的慢性病中,就诊诊断和问题列表的重叠率为 59.4%,仅在就诊中确定的疾病有 12.2%,仅在问题列表中确定的疾病有 28.4%。各种疾病的共同识别率从 7.1%到 84.4%不等。糖尿病(84.4%)、HIV(78.1%)和高血压(74.7%)的一致性最高。16 种疾病的一致性低于 50%,包括癌症和物质使用障碍。心理健康状况的重叠率从焦虑症的 47.4%到抑郁症的 59.8%不等。

讨论

这两种来源的一致性差异很大。在初级保健环境中需要定期管理的疾病可能比在专科护理中诊断和治疗的疾病有更高的一致性。

结论

在美国,仅依靠 EHR 就诊数据来识别慢性病而不参考患者问题列表,可能会导致 CHC 患者的慢性病漏报。

相似文献

2
Problem list completeness in electronic health records: A multi-site study and assessment of success factors.
Int J Med Inform. 2015 Oct;84(10):784-90. doi: 10.1016/j.ijmedinf.2015.06.011. Epub 2015 Jul 17.
4
Adult patient access to electronic health records.
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.
5
Assessing Cancer History Accuracy in Primary Care Electronic Health Records Through Cancer Registry Linkage.
J Natl Cancer Inst. 2021 Jul 1;113(7):924-932. doi: 10.1093/jnci/djaa210.
6
Open source electronic health records and chronic disease management.
J Am Med Inform Assoc. 2014 Feb;21(e1):e50-4. doi: 10.1136/amiajnl-2013-001672. Epub 2013 Jun 29.
9
Development of an algorithm to link electronic health record prescriptions with pharmacy dispense claims.
J Am Med Inform Assoc. 2018 Oct 1;25(10):1322-1330. doi: 10.1093/jamia/ocy095.

引用本文的文献

1
2
Diabetes Complications Among Community-Based Health Center Patients with Varying Multimorbidity Patterns.
J Gen Intern Med. 2025 May;40(6):1350-1358. doi: 10.1007/s11606-025-09457-y. Epub 2025 Mar 4.
3
Novel Electronic Health Record Strategies to Identify Frailty Among Hospitalized Older Adults with Multiple Chronic Conditions.
J Gen Intern Med. 2025 May;40(6):1275-1279. doi: 10.1007/s11606-024-09227-2. Epub 2024 Dec 4.
6
Negative Lifestyle Factors Specific to Aging Persons Living with HIV and Multimorbidity.
J Int Assoc Provid AIDS Care. 2024 Jan-Dec;23:23259582241245228. doi: 10.1177/23259582241245228.
7
Accessing and utilizing clinical and genomic data from an electronic health record data warehouse.
Transl Med Commun. 2023;8. doi: 10.1186/s41231-023-00140-0. Epub 2023 Mar 2.
8
Impact of Health Insurance Patterns on Chronic Health Conditions Among Older Patients.
J Am Board Fam Med. 2023 Oct 11;36(5):839-850. doi: 10.3122/jabfm.2023.230106R1. Epub 2023 Sep 13.

本文引用的文献

1
Impact of dementia: Health disparities, population trends, care interventions, and economic costs.
J Am Geriatr Soc. 2021 Jul;69(7):1774-1783. doi: 10.1111/jgs.17345.
2
Measuring Multimorbidity: Selecting the Right Instrument for the Purpose and the Data Source.
Med Care. 2021 Aug 1;59(8):743-756. doi: 10.1097/MLR.0000000000001566.
3
Temporal relationship of computed and structured diagnoses in electronic health record data.
BMC Med Inform Decis Mak. 2021 Feb 17;21(1):61. doi: 10.1186/s12911-021-01416-x.
4
Data-driven discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records.
Learn Health Syst. 2020 Sep 10;4(4):e10246. doi: 10.1002/lrh2.10246. eCollection 2020 Oct.
5
Subphenotyping depression using machine learning and electronic health records.
Learn Health Syst. 2020 Aug 3;4(4):e10241. doi: 10.1002/lrh2.10241. eCollection 2020 Oct.
6
Characterizing outpatient problem list completeness and duplications in the electronic health record.
J Am Med Inform Assoc. 2020 Aug 1;27(8):1190-1197. doi: 10.1093/jamia/ocaa125.
8
Comprehensive review of ICD-9 code accuracies to measure multimorbidity in administrative data.
BMC Health Serv Res. 2020 Jun 1;20(1):489. doi: 10.1186/s12913-020-05207-4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验