Suppr超能文献

执行功能在塑造强化学习中的作用。

The Role of Executive Function in Shaping Reinforcement Learning.

作者信息

Rmus Milena, McDougle Samuel D, Collins Anne G E

机构信息

Department of Psychology, University of California, Berkeley.

Department of Psychology, Yale University.

出版信息

Curr Opin Behav Sci. 2021 Apr;38:66-73. doi: 10.1016/j.cobeha.2020.10.003. Epub 2020 Nov 14.

Abstract

Reinforcement learning (RL) models have advanced our understanding of how animals learn and make decisions, and how the brain supports some aspects of learning. However, the neural computations that are explained by RL algorithms fall short of explaining many sophisticated aspects of human decision making, including the generalization of learned information, one-shot learning, and the synthesis of task information in complex environments.. Instead, these aspects of instrumental behavior are assumed to be supported by the brain's executive functions (EF). We review recent findings that highlight the importance of EF in learning. Specifically, we advance the theory that EF sets the stage for canonical RL computations in the brain, providing inputs that broaden their flexibility and applicability. Our theory has important implications for how to interpret RL computations in the brain and behavior.

摘要

强化学习(RL)模型增进了我们对动物如何学习和做出决策,以及大脑如何支持学习某些方面的理解。然而,RL算法所解释的神经计算不足以解释人类决策的许多复杂方面,包括所学信息的泛化、一次性学习以及复杂环境中任务信息的合成。相反,工具性行为的这些方面被认为是由大脑的执行功能(EF)支持的。我们回顾了最近强调EF在学习中重要性的研究结果。具体而言,我们提出了一种理论,即EF为大脑中的典型RL计算奠定了基础,提供了能够拓宽其灵活性和适用性的输入。我们的理论对于如何解释大脑和行为中的RL计算具有重要意义。

相似文献

1
The Role of Executive Function in Shaping Reinforcement Learning.
Curr Opin Behav Sci. 2021 Apr;38:66-73. doi: 10.1016/j.cobeha.2020.10.003. Epub 2020 Nov 14.
2
Multiple memory systems as substrates for multiple decision systems.
Neurobiol Learn Mem. 2015 Jan;117:4-13. doi: 10.1016/j.nlm.2014.04.014. Epub 2014 May 15.
3
Importance of prefrontal meta control in human-like reinforcement learning.
Front Comput Neurosci. 2022 Dec 21;16:1060101. doi: 10.3389/fncom.2022.1060101. eCollection 2022.
4
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2712-2724. doi: 10.1109/TPAMI.2020.3037898. Epub 2022 Apr 1.
5
A neural model of hierarchical reinforcement learning.
PLoS One. 2017 Jul 6;12(7):e0180234. doi: 10.1371/journal.pone.0180234. eCollection 2017.
6
Grid cells, place cells, and geodesic generalization for spatial reinforcement learning.
PLoS Comput Biol. 2011 Oct;7(10):e1002235. doi: 10.1371/journal.pcbi.1002235. Epub 2011 Oct 27.
7
Advanced Reinforcement Learning and Its Connections with Brain Neuroscience.
Research (Wash D C). 2023;6:0064. doi: 10.34133/research.0064. Epub 2023 Mar 15.
9
Beyond dichotomies in reinforcement learning.
Nat Rev Neurosci. 2020 Oct;21(10):576-586. doi: 10.1038/s41583-020-0355-6. Epub 2020 Sep 1.
10
Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2502-2507. doi: 10.1073/pnas.1720963115. Epub 2018 Feb 20.

引用本文的文献

2
Assessing executive functioning in higher education: development and structural validation of a new self-report scale.
Front Psychol. 2025 Jun 26;16:1613290. doi: 10.3389/fpsyg.2025.1613290. eCollection 2025.
3
Nucleus accumbens dopamine release reflects Bayesian inference during instrumental learning.
PLoS Comput Biol. 2025 Jul 2;21(7):e1013226. doi: 10.1371/journal.pcbi.1013226. eCollection 2025 Jul.
4
Computational markers show specific deficits for dyslexia and ADHD in complex learning settings.
NPJ Sci Learn. 2025 Jun 13;10(1):38. doi: 10.1038/s41539-025-00323-4.
5
An electrophysiological and behavioral investigation of feedback-based learning in aphasia.
Aphasiology. 2024;38(7):1195-1221. doi: 10.1080/02687038.2023.2267780. Epub 2023 Oct 22.
6
Anterior Cingulate Cortex Causally Supports Meta-Learning.
bioRxiv. 2024 Jun 13:2024.06.12.598723. doi: 10.1101/2024.06.12.598723.
7
Thalamocortical architectures for flexible cognition and efficient learning.
Trends Cogn Sci. 2024 Aug;28(8):739-756. doi: 10.1016/j.tics.2024.05.006. Epub 2024 Jun 17.
8
The challenge of learning adaptive mental behavior.
J Psychopathol Clin Sci. 2024 Jul;133(5):413-426. doi: 10.1037/abn0000924. Epub 2024 May 30.
9
Reward Reinforcement Creates Enduring Facilitation of Goal-directed Behavior.
J Cogn Neurosci. 2024 Dec 1;36(12):2847-2862. doi: 10.1162/jocn_a_02150.
10
Latent-state and model-based learning in PTSD.
Trends Neurosci. 2024 Feb;47(2):150-162. doi: 10.1016/j.tins.2023.12.002. Epub 2024 Jan 11.

本文引用的文献

1
Computational evidence for hierarchically structured reinforcement learning in humans.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29381-29389. doi: 10.1073/pnas.1912330117.
3
Humans incorporate trial-to-trial working memory uncertainty into rewarded decisions.
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8391-8397. doi: 10.1073/pnas.1918143117. Epub 2020 Mar 30.
4
A distributional code for value in dopamine-based reinforcement learning.
Nature. 2020 Jan;577(7792):671-675. doi: 10.1038/s41586-019-1924-6. Epub 2020 Jan 15.
5
Dopamine transients do not act as model-free prediction errors during associative learning.
Nat Commun. 2020 Jan 8;11(1):106. doi: 10.1038/s41467-019-13953-1.
6
Reduced model-based decision-making in gambling disorder.
Sci Rep. 2019 Dec 23;9(1):19625. doi: 10.1038/s41598-019-56161-z.
7
Intact Reinforcement Learning But Impaired Attentional Control During Multidimensional Probabilistic Learning in Older Adults.
J Neurosci. 2020 Jan 29;40(5):1084-1096. doi: 10.1523/JNEUROSCI.0254-19.2019. Epub 2019 Dec 11.
8
Distentangling the systems contributing to changes in learning during adolescence.
Dev Cogn Neurosci. 2020 Feb;41:100732. doi: 10.1016/j.dcn.2019.100732. Epub 2019 Nov 14.
9
A neural network for information seeking.
Nat Commun. 2019 Nov 14;10(1):5168. doi: 10.1038/s41467-019-13135-z.
10
Hierarchical cognitive control and the frontal lobes.
Handb Clin Neurol. 2019;163:165-177. doi: 10.1016/B978-0-12-804281-6.00009-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验