Suppr超能文献

美国食品和药物管理局批准的反义寡核苷酸药物的不良反应和毒性。

Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut.

Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut

出版信息

Drug Metab Dispos. 2022 Jun;50(6):879-887. doi: 10.1124/dmd.121.000418. Epub 2022 Feb 27.

Abstract

The market for large molecule biologic drugs has grown rapidly, including antisense oligonucleotide (ASO) drugs. ASO drugs work as single-stranded synthetic oligonucleotides that reduce production or alter functions of disease-causing proteins through various mechanisms, such as mRNA degradation, exon skipping, and ASO-protein interactions. Since the first ASO drug, fomivirsen, was approved in 1998, the U.S. Food and Drug Administration (FDA) has approved 10 ASO drugs to date. Although ASO drugs are efficacious in treating some diseases that are untargetable by small-molecule chemical drugs, concerns on adverse drug reactions (ADRs) and toxicity cannot be ignored. Illustrative of this, mipomersen was recently taken off the market due to its hepatotoxicity risk. This paper reviews ADRs and toxicity from FDA drug labeling, preclinical studies, clinical trials, and postmarketing real-world studies on the 10 FDA-approved ASO drugs, including fomivirsen and pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. Unique and common ADRs and toxicity for each ASO drug are summarized here. The risk of developing hepatotoxicity, kidney toxicity, and hypersensitivity reactions co-exists for multiple ASO drugs. Special precautions need to be in place when certain ASO drugs are administrated. Further discussion is extended on studying the mechanisms of ADRs and toxicity of these drugs, evaluating the existing physiologic and pathologic states of patients, optimizing the dose and route of administration, and formulating personalized treatment plans to improve the clinical utility of FDA-approved ASO drugs and discovery and development of new ASO drugs with reduced ADRs. SIGNIFICANCE STATEMENT: The current review provides a comprehensive analysis of unique and common ADRs and the toxicity of FDA-approved ASO drugs. The information can help better manage the risk of severe hepatotoxicity, kidney toxicity, and hypersensitivity reactions in the usage of currently approved ASO drugs and the discovery and development of new and safer ASO drugs.

摘要

大分子生物制药市场发展迅速,其中包括反义寡核苷酸(ASO)药物。ASO 药物作为单链合成寡核苷酸,通过多种机制降低致病蛋白的产生或改变其功能,例如 mRNA 降解、外显子跳跃和 ASO-蛋白相互作用。自 1998 年首个 ASO 药物福米韦森获批以来,截至目前,美国食品和药物管理局(FDA)已批准了 10 种 ASO 药物。尽管 ASO 药物在治疗某些小分子化学药物无法靶向的疾病方面具有疗效,但不能忽视对药物不良反应(ADR)和毒性的关注。例如,米泊美生因肝毒性风险而最近被撤出市场。本文综述了 FDA 药物标签、临床前研究、临床试验和上市后真实世界研究中,10 种 FDA 批准的 ASO 药物(包括福米韦森和贝伐珠单抗、米泊美生、那西妥单抗、依替膦酸、地夫可特、依特司伦、戈洛多辛、维立西呱和卡司美生)的 ADR 和毒性。本文总结了每种 ASO 药物的独特和常见 ADR 和毒性。多种 ASO 药物存在肝毒性、肾毒性和过敏反应风险。在使用某些 ASO 药物时需要特别注意。本文还进一步讨论了研究这些药物 ADR 和毒性机制、评估患者现有生理和病理状态、优化剂量和给药途径以及制定个性化治疗方案的必要性,以提高 FDA 批准的 ASO 药物的临床应用价值,并开发减少 ADR 的新型 ASO 药物。

意义陈述

本综述提供了对 FDA 批准的 ASO 药物的独特和常见 ADR 及毒性的全面分析。这些信息有助于更好地管理目前批准的 ASO 药物使用中严重肝毒性、肾毒性和过敏反应的风险,以及新的和更安全的 ASO 药物的发现和开发。

相似文献

1
Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.
Drug Metab Dispos. 2022 Jun;50(6):879-887. doi: 10.1124/dmd.121.000418. Epub 2022 Feb 27.
2
Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.
Drug Metab Dispos. 2022 Jun;50(6):888-897. doi: 10.1124/dmd.121.000417. Epub 2022 Feb 27.
3
Inhibition of survivin by 2'--methyl phosphorothioate-modified steric-blocking antisense oligonucleotides.
RSC Adv. 2024 Apr 24;14(19):13336-13341. doi: 10.1039/d4ra01925c. eCollection 2024 Apr 22.
4
Mechanisms of Action of the US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.
BioDrugs. 2024 Jul;38(4):511-526. doi: 10.1007/s40259-024-00665-2. Epub 2024 Jun 25.
5
Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination.
Pharmacol Ther. 2022 Feb;230:107967. doi: 10.1016/j.pharmthera.2021.107967. Epub 2021 Aug 14.
7
Nephrotoxicity of marketed antisense oligonucleotide drugs.
Curr Opin Toxicol. 2022 Dec;32. doi: 10.1016/j.cotox.2022.100373. Epub 2022 Oct 21.
8
[Antisense oligonucleotide as novel therapies for neurogenetic disorders].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2025 Jan 10;42(1):102-113. doi: 10.3760/cma.j.cn511374-20240821-00451.
9
Impact on efficacy of target reduction of two FDA-approved ASO drugs by intracellular glucose levels in cell models.
Mol Ther Nucleic Acids. 2025 Feb 15;36(1):102487. doi: 10.1016/j.omtn.2025.102487. eCollection 2025 Mar 11.

引用本文的文献

1
Bridge nucleic acid/DNA gapmers as inhibitors of gene expression by multiple antisense mechanisms.
Res Sq. 2025 Sep 3:rs.3.rs-7390173. doi: 10.21203/rs.3.rs-7390173/v1.
4
5
Delivery strategies for RNA-targeting therapeutic nucleic acids and RNA-based vaccines against respiratory RNA viruses: IAV, SARS-CoV-2, RSV.
Mol Ther Nucleic Acids. 2025 May 20;36(3):102572. doi: 10.1016/j.omtn.2025.102572. eCollection 2025 Sep 9.
6
A genome-wide CRISPR screen unveils the endosomal maturation protein WDR91 as a promoter of productive ASO activity in melanoma.
Mol Ther Nucleic Acids. 2025 May 24;36(3):102577. doi: 10.1016/j.omtn.2025.102577. eCollection 2025 Sep 9.
8
Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer.
Pharmaceuticals (Basel). 2025 May 12;18(5):713. doi: 10.3390/ph18050713.
9
Inhibition of the LINE1-derived transcript induces apoptosis and oncoprotein knockdown in cancer cells.
Mol Ther Nucleic Acids. 2025 Mar 31;36(2):102529. doi: 10.1016/j.omtn.2025.102529. eCollection 2025 Jun 10.

本文引用的文献

1
Gene Therapy for Duchenne Muscular Dystrophy.
J Neuromuscul Dis. 2021;8(s2):S303-S316. doi: 10.3233/JND-210678.
2
Epidemiological investigation of spinal muscular atrophy in Japan.
Brain Dev. 2022 Jan;44(1):2-16. doi: 10.1016/j.braindev.2021.08.002. Epub 2021 Aug 25.
5
Management of Familial Hypercholesterolemia: Current Status and Future Perspectives.
J Endocr Soc. 2020 Aug 21;5(1):bvaa122. doi: 10.1210/jendso/bvaa122. eCollection 2021 Jan 1.
6
Casimersen: First Approval.
Drugs. 2021 May;81(7):875-879. doi: 10.1007/s40265-021-01512-2. Epub 2021 Apr 16.
7
The growth of siRNA-based therapeutics: Updated clinical studies.
Biochem Pharmacol. 2021 Jul;189:114432. doi: 10.1016/j.bcp.2021.114432. Epub 2021 Jan 26.
9
Advances in oligonucleotide drug delivery.
Nat Rev Drug Discov. 2020 Oct;19(10):673-694. doi: 10.1038/s41573-020-0075-7. Epub 2020 Aug 11.
10
Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development.
J Clin Med. 2020 Jun 26;9(6):2004. doi: 10.3390/jcm9062004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验