Du Xiaoqiang, Ma Guangyu, Zhang Xiaoshuang
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
School of Science, North University of China, Taiyuan 030051, People's Republic of China.
Dalton Trans. 2022 Mar 22;51(12):4909-4918. doi: 10.1039/d2dt00138a.
Designing non-precious metal electrocatalysts for accelerated electron transfer and richer active site exposure is necessary and challenging to achieve the versatility of electrocatalysts. In this research, a self-grown nanosheet array electrocatalyst on nickel foam with high structural stability is first rationally designed through suitable anionic doping. The combined experimental and theoretical calculations reveal that the F-P-CoO/NF material optimizes the adsorption energy of hydrogen/water through electron coupling, and its nanosheet structure provides abundant active sites, accelerating the mass and electron transfer in the reaction process. It is worth noting that the as-developed F-P-CoO/NF materials exhibit outstanding catalytic activity for overpotentials of 192 and 110 mV at a current density of 10 mA cm for the oxygen evolution reaction and the hydrogen evolution reaction in 1 M KOH, respectively. More notably, an assembled F-P-CoO/NF//F-P-CoO/NF alkaline electrolytic cell requires only an ultra-low cell voltage of 1.53 V to achieve a current density of 10 mA cm, which is one of the best activities reported so far. Furthermore, F-P-CoO/NF also shows excellent performance for urea electrolysis. Theoretical calculations show that the superior activity of the F-P-CoO/NF catalyst is attributed to the optimal electron configuration and the lower Gibbs free energy of hydrogen adsorption due to co-doping of P and F. The work provides an alternative solution for the preparation of electrocatalysts with high structural stability, high catalytic activity and multifunction for alkaline water splitting and urea electrolysis.
设计用于加速电子转移和增加活性位点暴露的非贵金属电催化剂对于实现电催化剂的多功能性而言是必要且具有挑战性的。在本研究中,首先通过合适的阴离子掺杂合理设计了一种具有高结构稳定性的泡沫镍上的自生长纳米片阵列电催化剂。结合实验和理论计算表明,F-P-CoO/NF材料通过电子耦合优化了氢/水的吸附能,其纳米片结构提供了丰富的活性位点,加速了反应过程中的质量和电子转移。值得注意的是,所制备的F-P-CoO/NF材料在1 M KOH中对于析氧反应和析氢反应分别在电流密度为10 mA cm时表现出192和110 mV的过电位下具有出色的催化活性。更值得注意的是,组装的F-P-CoO/NF//F-P-CoO/NF碱性电解槽仅需1.53 V的超低电池电压即可实现10 mA cm的电流密度,这是迄今为止报道的最佳活性之一。此外,F-P-CoO/NF在尿素电解方面也表现出优异的性能。理论计算表明,F-P-CoO/NF催化剂的优异活性归因于P和F共掺杂导致的最佳电子构型和较低的氢吸附吉布斯自由能。这项工作为制备具有高结构稳定性、高催化活性以及用于碱性水分解和尿素电解的多功能性的电催化剂提供了一种替代解决方案。