State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
Microb Cell Fact. 2022 Mar 9;21(1):35. doi: 10.1186/s12934-022-01763-y.
D-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of D-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity.
The D-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in D-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of D-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L D-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural.
Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high D-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production.
D-木酮糖酸是一种多功能平台化学品,具有作为水泥减水剂和分散剂以及作为 1,4-丁二醇和 1,2,4-丁三醇前体的广泛应用潜力。利用氧化葡萄糖酸杆菌等细菌从廉价的木质纤维素原料中生产 D-木酮糖酸通常被认为是最有前途和最具成本效益的工业生产方法之一。然而,高底物浓度和水解物抑制剂会降低木酮糖酸的生产力。
通过过表达编码膜结合葡萄糖脱氢酶的 mGDH 基因,提高了氧化葡萄糖酸杆菌 DSM2003 的 D-木酮糖酸生产力。利用我们之前工作中基于 pBBR1MCS-5 的突变质粒,获得了重组菌株 G. oxydans/pBBR-R3510-mGDH,该菌株在生产 D-木酮糖酸和对水解物抑制剂的耐受性方面有了显著提高。该重组菌的 D-木糖分批补料生物转化达到了高浓度(588.7 g/L)、产率(99.4%)和比生产率(8.66 g/L/h)。此外,无需解毒,该重组菌直接从玉米秸秆水解物中生产了 246.4 g/L 的 D-木酮糖酸,产率为 98.9%,比生产率为 11.2 g/L/h。此外,G. oxydans/pBBR-R3510-mGDH 对典型抑制剂如甲酸、糠醛和 5-羟甲基糠醛具有很强的耐受性。
通过在氧化葡萄糖酸杆菌中过表达 mgdh,我们获得了重组菌株 G. oxydans/pBBR-R3510-mGDH,该菌株能够在高抑制剂浓度下从玉米秸秆水解物中高效生产木酮糖酸。氧化葡萄糖酸杆菌/pBBR-R3510-mGDH 的高 D-木酮糖酸生产力使其成为生物技术生产的理想选择。