Suppr超能文献

应用自适应光学眼底镜评估腺相关病毒介导的 hCHM 基因增强在脉络膜黑蒙患者眼内脉络膜注射的短期疗效。

Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy.

机构信息

Scheie Eye Institute, University of Pennsylvania, Philadelphia.

Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia.

出版信息

JAMA Ophthalmol. 2022 Apr 1;140(4):411-420. doi: 10.1001/jamaophthalmol.2022.0158.

Abstract

IMPORTANCE

Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells.

OBJECTIVE

To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia.

DESIGN, SETTING, AND PARTICIPANTS: This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015.

MAIN OUTCOMES AND MEASURES

The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point.

RESULTS

Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO.

CONCLUSIONS AND RELEVANCE

Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.

摘要

重要性

视网膜变性的视网膜下注射基因增强,强行将神经视网膜与视网膜色素上皮分离,可能会损伤光感受器和/或视网膜色素上皮细胞。

目的

使用自适应光学扫描激光检眼镜(AOSLO)评估接受腺相关病毒载体(AAV2-hCHM)亚视网膜注射的患者的短期视锥细胞马赛克的完整性,该载体旨在传递脉络膜黑色素瘤(CHM)基因的功能版本。

设计、设置和参与者:本纵向病例系列研究于 2015 年 2 月至 2016 年 1 月在美国招募了患有脉络膜黑色素瘤的成年患者。要被纳入研究,研究参与者必须接受单侧黄斑下低剂量(每只眼 5×1010 载体基因组)或高剂量(每只眼 1×1011 载体基因组)AAV2-hCHM 注射。分析于 2015 年 2 月开始。

主要结果和测量

在注射前和注射后 1 个月,使用定制的多模态 AOSLO 对双眼的黄斑区进行成像。在多个感兴趣区域比较注射后的视锥内节马赛克与注射前的马赛克。在每个时间点还采集了共焦光谱域光学相干断层扫描和暗适应视锥敏感性。

结果

9 名研究参与者在入组时年龄在 26 至 50 岁之间,均为白人男性。注射后 AOSLO 图像显示,所有 9 只接受 AAV2-hCHM 注射的眼睛中的视锥马赛克均得到保留。注射后 1 个月,马赛克图像完整且连续,除 1 名患者出现黄斑中心凹破坏外。光学相干断层扫描显示,注射后黄斑中心凹视锥外节缩短。9 只注射眼和 9 只未注射眼中的 8 只眼的视锥介导敏感性保持不变。1 名参与者出现黄斑中心凹光学相干断层扫描视锥外节相关信号的急性丢失,以及与 AOSLO 上的马赛克破坏相对应的视锥敏感性丧失。

结论和相关性

在接受 AAV2-hCHM 亚视网膜递药后,视锥马赛克的完整性得以维持,为注射的安全性提供了有力证据。手术引起的轻微黄斑中心凹变薄与短期视锥外节缩短相对应,而不是视锥细胞丢失。1 名参与者的黄斑中心凹视锥丢失提示个体对视网膜下注射的易感性。

相似文献

3
Multimodal Imaging of Photoreceptor Structure in Choroideremia.
PLoS One. 2016 Dec 9;11(12):e0167526. doi: 10.1371/journal.pone.0167526. eCollection 2016.
4
High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.
Invest Ophthalmol Vis Sci. 2014 Sep 4;55(10):6381-97. doi: 10.1167/iovs.13-13454.
5
Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry.
Ophthalmol Retina. 2019 Oct;3(10):888-899. doi: 10.1016/j.oret.2019.05.002. Epub 2019 May 8.
7
High-resolution images of retinal structure in patients with choroideremia.
Invest Ophthalmol Vis Sci. 2013 Feb 1;54(2):950-61. doi: 10.1167/iovs.12-10707.
8
FOVEAL PHENOTYPES IN CHOROIDEREMIA ON ADAPTIVE OPTICS SCANNING LIGHT OPHTHALMOSCOPY.
Retina. 2024 Apr 1;44(4):659-668. doi: 10.1097/IAE.0000000000003995.
9
Parafoveal cone function in choroideremia assessed with adaptive optics optoretinography.
Sci Rep. 2024 Apr 9;14(1):8339. doi: 10.1038/s41598-024-58059-x.
10
Multimodal Imaging in Choroideremia.
Adv Exp Med Biol. 2019;1185:139-143. doi: 10.1007/978-3-030-27378-1_23.

引用本文的文献

1
Tackling visual impairment: emerging avenues in ophthalmology.
Front Med (Lausanne). 2025 Apr 28;12:1567159. doi: 10.3389/fmed.2025.1567159. eCollection 2025.
2
Deep compressed multichannel adaptive optics scanning light ophthalmoscope.
Sci Adv. 2025 May 9;11(19):eadr5912. doi: 10.1126/sciadv.adr5912.
3
From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases.
Diagnostics (Basel). 2024 Dec 26;15(1):28. doi: 10.3390/diagnostics15010028.
5
Retinal Sensitivity in Comparison to Cone Density in Choroideremia.
Invest Ophthalmol Vis Sci. 2024 Dec 2;65(14):6. doi: 10.1167/iovs.65.14.6.
7
Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases.
J Clin Med. 2024 Sep 18;13(18):5512. doi: 10.3390/jcm13185512.
8
Cell-cell interaction in the pathogenesis of inherited retinal diseases.
Front Cell Dev Biol. 2024 Mar 4;12:1332944. doi: 10.3389/fcell.2024.1332944. eCollection 2024.
9
Adaptive Optics Retinal Imaging in RDH12-Associated Early Onset Severe Retinal Dystrophy.
Invest Ophthalmol Vis Sci. 2024 Mar 5;65(3):9. doi: 10.1167/iovs.65.3.9.

本文引用的文献

2
Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz.
Optica. 2019 Mar 20;6(3):300-303. doi: 10.1364/OPTICA.6.000300.
3
Optoretinography of individual human cone photoreceptors.
Opt Express. 2020 Dec 21;28(26):39326-39339. doi: 10.1364/OE.409193.
4
Clinical Perspective: Treating RPE65-Associated Retinal Dystrophy.
Mol Ther. 2021 Feb 3;29(2):442-463. doi: 10.1016/j.ymthe.2020.11.029. Epub 2020 Dec 3.
5
Chronically shortened rod outer segments accompany photoreceptor cell death in Choroideremia.
PLoS One. 2020 Nov 17;15(11):e0242284. doi: 10.1371/journal.pone.0242284. eCollection 2020.
6
High-speed adaptive optics line-scan OCT for cellular-resolution optoretinography.
Biomed Opt Express. 2020 Aug 26;11(9):5274-5296. doi: 10.1364/BOE.399034. eCollection 2020 Sep 1.
7
Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light.
Opt Lett. 2020 Sep 1;45(17):4658-4661. doi: 10.1364/OL.398868.
8
Cone Identification in Choroideremia: Repeatability, Reliability, and Automation Through Use of a Convolutional Neural Network.
Transl Vis Sci Technol. 2020 Jul 16;9(2):40. doi: 10.1167/tvst.9.2.40. eCollection 2020 Jul.
9
Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium.
Transl Vis Sci Technol. 2020 Jun 3;9(7):2. doi: 10.1167/tvst.9.7.2. eCollection 2020 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验