State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, China.
Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2122245119. doi: 10.1073/pnas.2122245119. Epub 2022 Mar 18.
High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.
高性能代谢分析在乳腺癌 (BrCa) 的诊断和预后中崭露头角。然而,仍然需要先进的工具来实现代谢分析的应用潜力。在这里,我们使用快速纳米颗粒增强激光解吸/电离质谱 (NPELDI-MS) 在几秒钟内记录 BrCa 的血清代谢指纹 (SMF),实现了高重复性和低消耗的直接血清检测,无需处理。随后,NPELDI-MS 生成的 SMF 的机器学习作为一种有效的读数,能够以 0.948 的曲线下面积将 BrCa 与非 BrCa 区分开来。此外,使用 SMF 构建了代谢预后评分系统,对 BrCa 具有有效的预测性能 (P < 0.005)。最后,我们确定了一个由七个代谢物组成的生物标志物面板,这些代谢物在 BrCa 血清中差异富集,并且它们的相关途径也不同。总之,我们的研究结果提供了一种高效的血清代谢工具来描述 BrCa,并强调了某些代谢特征作为包括但不限于 BrCa 的疾病的潜在诊断和预后因素。