Zhu Xiaobo, Schülli Tobias U, Yang Xiaowei, Lin Tongen, Hu Yuxiang, Cheng Ningyan, Fujii Hiroki, Ozawa Kiyoshi, Cowie Bruce, Gu Qinfen, Zhou Si, Cheng Zhenxiang, Du Yi, Wang Lianzhou
Nanomaterials Centre, School of Chemical Engineering, and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
Nat Commun. 2022 Mar 23;13(1):1565. doi: 10.1038/s41467-022-28963-9.
Transition metal dissolution in cathode active material for Li-based batteries is a critical aspect that limits the cycle life of these devices. Although several approaches have been proposed to tackle this issue, this detrimental process is not yet overcome. Here, benefitting from the knowledge developed in the semiconductor research field, we apply an epitaxial method to construct an atomic wetting layer of LaTMO (TM = Ni, Mn) on a LiNiMnO cathode material. Experimental measurements and theoretical analyses confirm a Stranski-Krastanov growth, where the strained wetting layer forms under thermodynamic equilibrium, and it is self-limited to monoatomic thickness due to the competition between the surface energy and the elastic energy. Being atomically thin and crystallographically connected to the spinel host lattices, the LaTMO wetting layer offers long-term suppression of the transition metal dissolution from the cathode without impacting its dynamics. As a result, the epitaxially-engineered cathode material enables improved cycling stability (a capacity retention of about 77% after 1000 cycles at 290 mA g) when tested in combination with a graphitic carbon anode and a LiPF-based non-aqueous electrolyte solution.
过渡金属在锂基电池阴极活性材料中的溶解是限制这些器件循环寿命的一个关键因素。尽管已经提出了几种方法来解决这个问题,但这个有害过程尚未得到克服。在此,受益于半导体研究领域所积累的知识,我们应用一种外延方法在LiNiMnO阴极材料上构建LaTMO(TM = Ni、Mn)原子润湿层。实验测量和理论分析证实了斯特兰斯基-克拉斯坦诺夫生长模式,即在热力学平衡下形成应变润湿层,由于表面能和弹性能之间的竞争,该润湿层自限为单原子厚度。LaTMO润湿层原子级薄且与尖晶石主体晶格晶体学连接,可长期抑制阴极过渡金属的溶解,而不影响其动力学。因此,当与石墨碳阳极和基于LiPF的非水电解质溶液组合测试时,这种经过外延工程设计的阴极材料能够实现更好的循环稳定性(在290 mA g下1000次循环后容量保持率约为77%)。