Suppr超能文献

用于改善主动和被动运动训练中人机交互的 7 自由度上肢外骨骼的设计和运动学性能分析。

Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.

机构信息

Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.

Shanghai Engineering Research Center of Assistive Devices, Shanghai, China.

出版信息

Technol Health Care. 2022;30(5):1167-1182. doi: 10.3233/THC-213573.

Abstract

BACKGROUND

Upper-limb rehabilitation robots have become an important piece of equipment in stroke rehabilitation. The design of exoskeleton mechanisms plays a key role to improve human-robot interface in the upper-limb movements under passive and active rehabilitation training.

OBJECTIVE

This paper proposes a novel of the 7-DOF (RR-RR-PRR) under-actuated exoskeleton mechanism based on the characteristics of the upper-limb movements in both of active and passive training. This aim of the proposed work is to improve human-robot interface in rehabilitation training with robots.

METHODS

Firstly, the characteristics of active and passive movement training are analyzed depending on the human upper-limb model. Then, a novel 7-DOF (RR-RR-PRR) exoskeleton mechanism is proposed based on the analyzed characteristics. After that, kinematical performances of the proposed exoskeleton are analyzed on the workspace, manipulability and manipulability ellipsoid by compared with the common exoskeleton configuration of the 7 DOFs (RRR-R-PRR) mechanism. In the end, the prototype is manufactured and tested by undergoing the experiments of single-joint passive movement training and multi-joint active movement training. The human-robot interface of the proposed exoskeleton is demonstrated by root mean square error, Pearson correlation coefficient, and the time-delay difference.

RESULTS

The results of the kinematical performance show that the effective workspace and the flexibility of the exoskeleton with the proposed configuration are increased by 10.44% and 1.7%. In the single-joint passive movement training experiment, the root mean square errors are 6.986, 7.568, 5.846, and Pearson correlation coefficients are 0.989, 0.984, 0.988 at the shoulder joint and the elbow joint, respectively. The time-delay differences are not beyond 3.1%. In the multi-joint active movement training experiment, the root mean square errors are 9.312 and 7.677, and Pearson correlation coefficients are 0.906 and 0.968 at the shoulder joint and the elbow joint, respectively. The time-delay differences are not beyond 3.28%.

CONCLUSIONS

The proposed 7 DOFs exoskeleton mechanism shows uniformity with that of the common exoskeleton on the same rehabilitation trajectory which is effective to improve human-robot interface under passive and active rehabilitation training.

摘要

背景

上肢康复机器人已成为中风康复的重要设备。在外骨骼机构的设计中,为了提高在被动和主动康复训练下的人机接口,扮演着关键角色。

目的

本研究提出了一种新型 7 自由度(RR-RR-PRR)欠驱动外骨骼机构,基于主动和被动训练中上肢运动的特点。本研究的目的是利用机器人改善康复训练中的人机接口。

方法

首先,根据人体上肢模型分析主动和被动运动训练的特点。然后,根据分析的特点提出一种新型 7 自由度(RR-RR-PRR)外骨骼机构。之后,通过与常见的 7 自由度(RRR-R-PRR)机构的外骨骼构型相比,在工作空间、可操作性和可操作性椭球体上分析所提出的外骨骼的运动学性能。最后,制造原型并通过单关节被动运动训练和多关节主动运动训练的实验进行测试。通过均方根误差、皮尔逊相关系数和时滞差来演示所提出的外骨骼的人机接口。

结果

运动学性能的结果表明,所提出构型的外骨骼的有效工作空间和灵活性分别增加了 10.44%和 1.7%。在单关节被动运动训练实验中,肩关节和肘关节的均方根误差分别为 6.986、7.568、5.846,皮尔逊相关系数分别为 0.989、0.984、0.988。时滞差不超过 3.1%。在多关节主动运动训练实验中,肩关节和肘关节的均方根误差分别为 9.312 和 7.677,皮尔逊相关系数分别为 0.906 和 0.968。时滞差不超过 3.28%。

结论

在所提出的康复轨迹上,所提出的 7 自由度外骨骼机构与常见外骨骼机构具有一致性,这对于提高被动和主动康复训练下的人机接口具有有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验