Suppr超能文献

基于放射科医生共识的人工智能驱动的乳腺钼靶图像乳腺密度分类工具的开发与验证

Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus.

作者信息

Magni Veronica, Interlenghi Matteo, Cozzi Andrea, Alì Marco, Salvatore Christian, Azzena Alcide A, Capra Davide, Carriero Serena, Della Pepa Gianmarco, Fazzini Deborah, Granata Giuseppe, Monti Caterina B, Muscogiuri Giulia, Pellegrino Giuseppe, Schiaffino Simone, Castiglioni Isabella, Papa Sergio, Sardanelli Francesco

机构信息

Department of Biomedical Sciences for Health (V.M., A.C., D.C., C.B.M., F.S.) and Postgraduate School in Radiodiagnostics (A.A.A., S.C., G.D.P., G.G., G.M., G.P.), Università degli Studi di Milano, Milan, Italy; DeepTrace Technologies, Milan, Italy (M.I., C.S.); Unit of Diagnostic Imaging and Stereotactic Radiosurgery, C.D.I. Centro Diagnostico Italiano, Milan, Italy (M.A., D.F., S.P.); Bracco Imaging, Milan, Italy (M.A.); Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy (C.S.); Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy (S.S., F.S.); Institute of Biomedical Imaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy (I.C.); and Department of Physics, Università degli Studi di Milano-Bicocca, Milan, Italy (I.C.).

出版信息

Radiol Artif Intell. 2022 Mar 16;4(2):e210199. doi: 10.1148/ryai.210199. eCollection 2022 Mar.

Abstract

Mammographic breast density (BD) is commonly visually assessed using the Breast Imaging Reporting and Data System (BI-RADS) four-category scale. To overcome inter- and intraobserver variability of visual assessment, the authors retrospectively developed and externally validated a software for BD classification based on convolutional neural networks from mammograms obtained between 2017 and 2020. The tool was trained using the majority BD category determined by seven board-certified radiologists who independently visually assessed 760 mediolateral oblique (MLO) images in 380 women (mean age, 57 years ± 6 [SD]) from center 1; this process mimicked training from a consensus of several human readers. External validation of the model was performed by the three radiologists whose BD assessment was closest to the majority (consensus) of the initial seven on a dataset of 384 MLO images in 197 women (mean age, 56 years ± 13) obtained from center 2. The model achieved an accuracy of 89.3% in distinguishing BI-RADS a or b (nondense breasts) versus c or d (dense breasts) categories, with an agreement of 90.4% (178 of 197 mammograms) and a reliability of 0.807 (Cohen κ) compared with the mode of the three readers. This study demonstrates accuracy and reliability of a fully automated software for BD classification. Mammography, Breast, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms © RSNA, 2022.

摘要

乳腺钼靶密度(BD)通常使用乳腺影像报告和数据系统(BI-RADS)的四类量表进行视觉评估。为了克服视觉评估中观察者间和观察者内的变异性,作者回顾性开发并外部验证了一种基于卷积神经网络的软件,用于对2017年至2020年期间获得的乳腺钼靶图像进行BD分类。该工具使用由七位获得董事会认证的放射科医生确定的主要BD类别进行训练,这些医生独立对来自中心1的380名女性(平均年龄57岁±6[标准差])的760张内外侧斜位(MLO)图像进行了视觉评估;这个过程模仿了几位人类读者达成共识后的训练。该模型的外部验证由三位放射科医生进行,他们对BD的评估与最初七位医生在从中心2获得的197名女性(平均年龄56岁±13)的384张MLO图像数据集上的多数(共识)评估最为接近。在区分BI-RADS a或b(非致密型乳腺)与c或d(致密型乳腺)类别方面,该模型的准确率达到89.3%,与三位读者的模式相比,一致性为90.4%(197张乳腺钼靶图像中的178张),可靠性为0.807(Cohen κ)。这项研究证明了一种用于BD分类的全自动软件的准确性和可靠性。乳腺钼靶检查、乳腺、卷积神经网络(CNN)、深度学习算法、机器学习算法 © RSNA,2022。

相似文献

1
Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus.
Radiol Artif Intell. 2022 Mar 16;4(2):e210199. doi: 10.1148/ryai.210199. eCollection 2022 Mar.
2
Automated mammographic breast density estimation using a fully convolutional network.
Med Phys. 2018 Mar;45(3):1178-1190. doi: 10.1002/mp.12763. Epub 2018 Feb 19.
3
A deep learning method for classifying mammographic breast density categories.
Med Phys. 2018 Jan;45(1):314-321. doi: 10.1002/mp.12683. Epub 2017 Dec 22.
4
Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
J Digit Imaging. 2018 Aug;31(4):387-392. doi: 10.1007/s10278-017-0022-2.
5
Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation.
Radiology. 2019 Jan;290(1):52-58. doi: 10.1148/radiol.2018180694. Epub 2018 Oct 16.
6
Determination of mammographic breast density using a deep convolutional neural network.
Br J Radiol. 2019 Jan;92(1093):20180691. doi: 10.1259/bjr.20180691. Epub 2018 Oct 1.
7
8
A new automated method to evaluate 2D mammographic breast density according to BI-RADS® Atlas Fifth Edition recommendations.
Eur Radiol. 2019 Jul;29(7):3830-3838. doi: 10.1007/s00330-019-06016-y. Epub 2019 Feb 15.
9
External Evaluation of a Mammography-based Deep Learning Model for Predicting Breast Cancer in an Ethnically Diverse Population.
Radiol Artif Intell. 2023 Jul 26;5(6):e220299. doi: 10.1148/ryai.220299. eCollection 2023 Nov.

引用本文的文献

1
Deep learning prediction of mammographic breast density using screening data.
Sci Rep. 2025 Apr 4;15(1):11602. doi: 10.1038/s41598-025-95275-5.
3
Breast MRI to Screen Women With Extremely Dense Breasts.
J Magn Reson Imaging. 2025 Jul;62(1):58-72. doi: 10.1002/jmri.29716. Epub 2025 Jan 24.
5
Exploring Dense Breast Density in Mammography: A Comparative Analysis of Breast Cancer Risk.
Cureus. 2024 Nov 19;16(11):e74026. doi: 10.7759/cureus.74026. eCollection 2024 Nov.
6
Contrast Enhancement in Breast Cancer: Magnetic Resonance vs. Mammography: A 10-Year Systematic Review.
Diagnostics (Basel). 2024 Oct 28;14(21):2400. doi: 10.3390/diagnostics14212400.
9
A Pictorial Exploration of Mammary Paget Disease: Insights and Perspectives.
Cancers (Basel). 2023 Nov 3;15(21):5276. doi: 10.3390/cancers15215276.

本文引用的文献

1
ACR Appropriateness Criteria® Supplemental Breast Cancer Screening Based on Breast Density.
J Am Coll Radiol. 2021 Nov;18(11S):S456-S473. doi: 10.1016/j.jacr.2021.09.002.
2
AI applications to medical images: From machine learning to deep learning.
Phys Med. 2021 Mar;83:9-24. doi: 10.1016/j.ejmp.2021.02.006. Epub 2021 Mar 1.
4
Supplemental MRI Screening for Women with Extremely Dense Breast Tissue.
N Engl J Med. 2019 Nov 28;381(22):2091-2102. doi: 10.1056/NEJMoa1903986.
5
New Federal Requirements to Inform Patients About Breast Density: Will They Help Patients?
JAMA. 2019 Jun 18;321(23):2275-2276. doi: 10.1001/jama.2019.5919.
6
Variability of Breast Density Classification Between US and UK Radiologists.
J Med Imaging Radiat Sci. 2019 Mar;50(1):53-61. doi: 10.1016/j.jmir.2018.11.002. Epub 2019 Jan 5.
7
Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation.
Radiology. 2019 Jan;290(1):52-58. doi: 10.1148/radiol.2018180694. Epub 2018 Oct 16.
8
An overview of mammographic density and its association with breast cancer.
Breast Cancer. 2018 May;25(3):259-267. doi: 10.1007/s12282-018-0857-5. Epub 2018 Apr 12.
9
Intercountry analysis of breast density classification using visual grading.
Br J Radiol. 2017 Aug;90(1076):20170064. doi: 10.1259/bjr.20170064. Epub 2017 Jun 14.
10
Comparison of subjective and fully automated methods for measuring mammographic density.
Acta Radiol. 2018 Feb;59(2):154-160. doi: 10.1177/0284185117712540. Epub 2017 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验