Magni Veronica, Interlenghi Matteo, Cozzi Andrea, Alì Marco, Salvatore Christian, Azzena Alcide A, Capra Davide, Carriero Serena, Della Pepa Gianmarco, Fazzini Deborah, Granata Giuseppe, Monti Caterina B, Muscogiuri Giulia, Pellegrino Giuseppe, Schiaffino Simone, Castiglioni Isabella, Papa Sergio, Sardanelli Francesco
Department of Biomedical Sciences for Health (V.M., A.C., D.C., C.B.M., F.S.) and Postgraduate School in Radiodiagnostics (A.A.A., S.C., G.D.P., G.G., G.M., G.P.), Università degli Studi di Milano, Milan, Italy; DeepTrace Technologies, Milan, Italy (M.I., C.S.); Unit of Diagnostic Imaging and Stereotactic Radiosurgery, C.D.I. Centro Diagnostico Italiano, Milan, Italy (M.A., D.F., S.P.); Bracco Imaging, Milan, Italy (M.A.); Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy (C.S.); Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy (S.S., F.S.); Institute of Biomedical Imaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy (I.C.); and Department of Physics, Università degli Studi di Milano-Bicocca, Milan, Italy (I.C.).
Radiol Artif Intell. 2022 Mar 16;4(2):e210199. doi: 10.1148/ryai.210199. eCollection 2022 Mar.
Mammographic breast density (BD) is commonly visually assessed using the Breast Imaging Reporting and Data System (BI-RADS) four-category scale. To overcome inter- and intraobserver variability of visual assessment, the authors retrospectively developed and externally validated a software for BD classification based on convolutional neural networks from mammograms obtained between 2017 and 2020. The tool was trained using the majority BD category determined by seven board-certified radiologists who independently visually assessed 760 mediolateral oblique (MLO) images in 380 women (mean age, 57 years ± 6 [SD]) from center 1; this process mimicked training from a consensus of several human readers. External validation of the model was performed by the three radiologists whose BD assessment was closest to the majority (consensus) of the initial seven on a dataset of 384 MLO images in 197 women (mean age, 56 years ± 13) obtained from center 2. The model achieved an accuracy of 89.3% in distinguishing BI-RADS a or b (nondense breasts) versus c or d (dense breasts) categories, with an agreement of 90.4% (178 of 197 mammograms) and a reliability of 0.807 (Cohen κ) compared with the mode of the three readers. This study demonstrates accuracy and reliability of a fully automated software for BD classification. Mammography, Breast, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms © RSNA, 2022.
乳腺钼靶密度(BD)通常使用乳腺影像报告和数据系统(BI-RADS)的四类量表进行视觉评估。为了克服视觉评估中观察者间和观察者内的变异性,作者回顾性开发并外部验证了一种基于卷积神经网络的软件,用于对2017年至2020年期间获得的乳腺钼靶图像进行BD分类。该工具使用由七位获得董事会认证的放射科医生确定的主要BD类别进行训练,这些医生独立对来自中心1的380名女性(平均年龄57岁±6[标准差])的760张内外侧斜位(MLO)图像进行了视觉评估;这个过程模仿了几位人类读者达成共识后的训练。该模型的外部验证由三位放射科医生进行,他们对BD的评估与最初七位医生在从中心2获得的197名女性(平均年龄56岁±13)的384张MLO图像数据集上的多数(共识)评估最为接近。在区分BI-RADS a或b(非致密型乳腺)与c或d(致密型乳腺)类别方面,该模型的准确率达到89.3%,与三位读者的模式相比,一致性为90.4%(197张乳腺钼靶图像中的178张),可靠性为0.807(Cohen κ)。这项研究证明了一种用于BD分类的全自动软件的准确性和可靠性。乳腺钼靶检查、乳腺、卷积神经网络(CNN)、深度学习算法、机器学习算法 © RSNA,2022。