UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
Mol Psychiatry. 2022 Jul;27(7):3085-3094. doi: 10.1038/s41380-022-01558-y. Epub 2022 Apr 14.
Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.
吸烟和饮酒是全球最普遍使用的物质之一,它们导致了大量可预防的发病率和死亡率,这突显了了解其病因学的重要性。全基因组关联研究(GWAS)已成功鉴定出与吸烟和饮酒特征相关的遗传变异。然而,绝大多数风险变异位于基因组的非编码区域,其靶基因和神经生物学机制尚不清楚。染色体构象图谱可以通过绘制与靶基因相关的风险调节变异的相互作用图谱来解决这一知识空白。为了研究与吸烟和饮酒特征相关的常见变异的功能影响,我们应用了基于皮质和新生成的中脑多巴胺能神经元 Hi-C 数据集的 Hi-C 结合 MAGMA(H-MAGMA),对尼古丁依赖、每天吸烟量、有问题的饮酒和每周饮酒量的 GWAS 汇总统计数据进行了分析。确定的风险基因映射到与吸烟和饮酒特征相关的关键途径,包括药物代谢过程和神经元凋亡。风险基因在皮质谷氨酸能、中脑多巴胺能、GABA 能和 5-羟色胺能神经元中高度表达,这表明它们是理解遗传风险因素如何影响吸烟和饮酒的相关细胞类型。最后,我们在假设它们可能揭示成瘾的无物质共享神经生物学机制的情况下,在吸烟和饮酒特征之间鉴定出了多效基因。在多巴胺能神经元中,多效基因的数量比皮质神经元高约 26 倍,这强调了上行多巴胺能途径在介导一般成瘾表型方面的关键作用。总之,大脑区域和神经元亚型特异性的 3D 基因组结构通过将遗传风险因素与其靶基因联系起来,帮助完善吸烟、饮酒和一般成瘾表型的神经生物学假设。